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CHAPTER 1

Local polynomial approximation over convex

domains in R
n

In this chapter we review the theory of local approximation using multivariate
algebraic polynomials of relatively low-degree over ‘regular’ domains in R

n. By
‘regular’ domains we mean domains which have nice geometric properties as we
define precisely in the next section. This local smoothness analysis and approxima-
tion by algebraic polynomials is the critical component that allows us to construct
anisotropic spaces that are a ‘true’ generalization of the classical isotropic function
spaces over R

n. This is in contrast to general spaces of homogeneous type that do
not have enough ‘structure’ and thus function spaces defined over them are limited
in various ways. In section 1.2 we review the analysis tools we use to quantity
local function smoothness. In section 1.3 we provide some properties of algebraic
polynomials over convex domains. We then proceed to provide estimates for the
degree of polynomial approximation over domains, where section 1.4 is focused on
approximation in the p-norm, with 1 ≤ p ≤ ∞, of the Sobolev class and section 1.5
is mostly dedicated to approximation in the p-norm, with 0 < p < 1.

1.1. Geometric properties of regular bounded domains

Definition 1.1. We denote by B(x0, r) the Euclidean ball in R
n with center

at x0 ∈ R
n and radius r > 0. The image of the Euclidean unit ball B∗ := B(0, 1)

via an affine transform will be called an ellipsoid . For a given ellipsoid θ we let
Aθ be an affine transform such that θ = Aθ (B∗). Denoting by vθ := Aθ (0) the
‘center’ of θ we have

(1.1) Aθ (x) = Mθx + vθ,

where Mθ is a positive definite n × n matrix.

Any positive definite n × n real matrix M can be represented in the form
M = UDU−1, where the matrix U is n × n orthogonal matrix and D is diagonal
and D = diag (σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn > 0. It is easy to see
that σ2

1 ≥ · · · ≥ σ2
n are the eigenvalues of MT M and σ−2

1 ≤ · · · ≤ σ−2
n are the

eigenvalues of (M−1)T M−1. Hence

(1.2) ‖M‖`2→`2 = σ1 and ‖M−1‖`2→`2 = 1/σn.

These norms have a clear geometric meaning. Thus if Mθ is as in (1.1), then
diam θ = 2‖Mθ‖`2→`2 = 2σ1. One can also say that the width of θ is 2σn, since
σn is the length of the smallest axis of θ. The ellipsoid is in fact the prototypical
example of bounded convex domains.

Definition 1.2. A set Ω ⊆ R
n is convex if for any two points x, y ∈ Ω the

line segment [x, y] is contained in Ω. The convex-hull of a set A ⊂ R
n is the
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2 1. LOCAL POLYNOMIAL APPROXIMATION OVER CONVEX DOMAINS IN R
n

‘minimal’ convex set containing A, which is given by the intersection of all convex
sets containing A.

Proposition 1.3. John’s Theorem [21] For any bounded convex domain
Ω ⊂ R

n exists an ellipsoid θ ⊆ Ω such that if vθ is the center of θ, then

θ = vθ + Mθ(B
∗) ⊆ Ω ⊆ vθ + n(Mθ(B

∗)).

This implies that the affine transform A−1
θ (x) := M−1

θ (x − vθ) gives

(1.3) B(0, 1) ⊆ A−1
θ (Ω) ⊆ B(0, n).

It is interesting to note that John’s ellipsoid θ, is the ellipsoid with maximal
volume such that θ ⊆ Ω. In some sense this means that θ ‘covers’ Ω sufficiently
well. Our approximation theoretical applications of John’s theorem utilize the fact
that bounded convex domains are essentially equivalent to the Euclidean ball B∗

up to an affine transformation and scale n.

Definition 1.4. A domain Ω ⊂ R
n is star-shaped with respect to a Euclidean

ball B (or a point x0), if for any point x ∈ Ω, the convex-hull of {x} ∪ B (or the
line segment [x, x0]) is contained in Ω.

We call the set

V := {x ∈ R
n : x = 0 ∨ 0 < |x| ≤ ρ, ∠(x, v) ≤ κ/2},

a finite cone of axis direction v, height ρ, and aperture angle κ, where ∠(x, v) is
the angle between x and v. For z ∈ R

n, the set z+V := {z+y, y ∈ V } is a translate
of V , which is a finite cone with head vertex at z. A cone V ′ is congruent to V ,
if it can be obtained from V thorough a rigid motion.

We now define notions of ‘minimally smooth’ domains (see pages 81-83 in [1],
page 189 in [28]). Although we will be mostly dealing with bounded convex domains
and, in particular the special case ellipsoids, some of the results we use or prove
hold for more general types of domains.

Definition 1.5. A domain Ω ⊂ R
n is said to satisfy the uniform cone prop-

erty if there exist numbers δ > 0, L > 0, a finite cover of open sets {Uj}J
j=1 of

∂Ω, and a corresponding collection {Vj}J
j=1 of finite cones, each congruent to some

fixed cone V , such that

(i) diam(Uj) ≤ L, 1 ≤ j ≤ J .

(ii) For any x ∈ Ω such that dist(x, ∂Ω) < δ, we have x ∈ ⋃J
j=1 Uj .

(iii) If x ∈ Ω ∩ Uj , then x + Vj ⊆ Ω, 1 ≤ j ≤ J .

We will say the domain satisfies the overlapping uniform cone property if in
addition the following condition is satisfied

(iv) For every pair of points x1, x2 ∈ Ω, such that |x1−x2| < δ and dist(xi, ∂Ω) <
δ, i = 1, 2, there exists an index j such that xi ∈ Uj , i = 1, 2

Theorem 1.6. Let Ω ⊂ R
n be a convex domain such that B(0, R1) ⊆ Ω ⊆

B(0, R2), for some fixed 0 < R1 < R2. Then Ω satisfies the overlapping uniform
cone property with parameters that depend only on n, R1 and R2.

1.2. The Modulus of smoothness

From this point, we assume that domains Ω ⊂ R
n are measurable with a

nonempty interior and that all functions are measurable and real.
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1.2. THE MODULUS OF SMOOTHNESS 3

1.2.1. Definitions And Basic Properties.

Definition 1.7. Let W r
p (Ω), 1 ≤ p ≤ ∞ r ∈ N denote the Sobolev spaces,

namely, the spaces of functions g ∈ Lp(Ω), which have all their distributional
derivatives of order up to r, in Lp(Ω). The norm of the Sobolev space is given by

(1.4) ‖g‖Wr
p (Ω) := ‖g‖r,p =

∑

|α|≤r

‖∂αg‖Lp(Ω),

where for α ∈ Z
n
+, |α| :=

∑n
i=1 αi, while the semi-norm is given by

(1.5) |g|Wr
p (Ω) := |g|r,p =

∑

|α|=r

‖∂αg‖Lp(Ω).

One can show [1] that the norms of the derivatives of order 1 ≤ j < r can be
bounded using the p-norm and the derivatives of order r. Hence

(1.6) ‖g‖Wr
p (Ω) ∼ ‖g‖Lp(Ω) + |g|Wr

p (Ω).

Definition 1.8. The K-functional of order r of f ∈ Lp(Ω), 1 ≤ p ≤ ∞,
(see e.g. [17]) is defined by

(1.7) Kr(f, t)p := K(f, t, Lp(Ω), W r
p (Ω)) := inf

g∈Wr
p (Ω)

{
∥∥f−g‖p+t|g|r,p}, t > 0.

For a bounded domain Ω, we denote

(1.8) Kr(f, Ω)p := K(f, diam(Ω)r)p.

It is important to note that the K-functional is unsuitable as a measure of smooth-
ness if 0 < p < 1 (see [18]). For f ∈ Lp(Ω), 0 < p ≤ ∞, h ∈ R

d, and r ∈ N, we
define the rth order difference operator ∆r

hf : Ω → R, by

(1.9) ∆r
h(f, x) := ∆r

h(f, Ω, x) :=






r∑
k=0

(−1)r+k
(

r
k

)
f(x + kh), [x, x + rh] ⊂ Ω,

0, otherwise,

where [x, y] denotes the line segment connecting any two points x, y ∈ R
n.

Definition 1.9. The modulus of smoothness of order r is defined by

(1.10) ωr(f, t)p = ωr(f, Ω, t)p := sup
|h|≤t

∥∥∆r
h(f, Ω, ·)

∥∥
Lp(Ω)

, t > 0,

where for a vector h ∈ R
n, |h| denotes the l2-norm of h. For a bounded domain Ω

we also denote

(1.11) ωr(f, Ω)p := ωr(f, diam(Ω))p.

We list some of the properties of the modulus of smoothness that we shall use
throughout the book (see [17]) for more details),

Proposition 1.10. Let Ω ⊆ R
n and f, g ∈ Lp(Ω), 0 < p ≤ ∞. Then for any

t > 0,

(i) ωr(f, t)p ≤ c(r, p)‖f‖p. In more general form, for any 0 ≤ k < r,
ωr(f, t)p ≤ C(r, k, p)ωk(f, t)p, (where ω0(f, ·)p = ‖f‖p).

(ii) ωr(f + g, t)p ≤ c(p)(ωr(f, t)p + ωr(g, t)p).
(iii) For any λ ≥ 1, ωr(f, λt)p ≤ (λ + 1)rωr(f, t)p, for 1 ≤ p ≤ ∞, and

ωr(f, λt)p
p ≤ (λ + 1)rωr(f, t)p

p, for 0 < p < 1.
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(iv) If Ω1 ⊆ Ω2 ⊆ R
n, then for any vector h ∈ R

n, and domain Ω,

(1.12)
∥∥∆r

h(f, Ω1, ·)
∥∥

Lp(Ω)
≤

∥∥∆r
h(f, Ω2, ·)

∥∥
Lp(Ω)

,

and
ωr(f, Ω1, t)p ≤ ωr(f, Ω2, t)p.

1.2.2. Relations Between The Modulus Of Smoothness And K-Functional.

We now present the relationship of the difference and the derivative operators using
B-splines. We recall the univariate B-spline of order 1 (degree 0), N1(u) := 1[0,1](u).
Then, the B-spline of order r (degree r − 1), is defined by Nr := Nr−1 ∗ N1. The
B-spline of order r is supported on [0, r], is in Cr−1 and is a piecewise polynomial
of degree r − 1 over the integer intervals. For h1 > 0, we define Nr(u, h1) :=
h−1

1 Nr(h
−1
1 u). Let g ∈ Cr(Ω), and let h ∈ R

n, with |h| = h1 > 0, then if the

segment [x, x + h] is contained in Ω, we have for ξ := h−1
1 h, G(u) := g(x + uξ),

u ∈ R,

h−1
1 ∆h(g, x) = h−1

1

∫ h1

0

G′(u)du

=

∫

R

G′(u)N1(u, h1)du

=

∫

R

Dξg(x + uξ)N1(u, h1)du,

where

Dξg(y) := lim
u→0

g(y + uξ) − g(y)

u
.

By induction, we get for r ≥ 1

(1.13) h−r
1 ∆r

h(g, x) =

∫

R

G(r)(u)Nr(u, h1)du =

∫

R

Dr
ξg(x + uξ)Nr(u, h1)du.

Based on the relation (1.13) we can bound the modulus of smoothness of the Sobolev
class.

Theorem 1.11. For g ∈ W r
p (Ω), r ≥ 1, 1 ≤ p ≤ ∞,

(1.14) ωr(g, t)p ≤ c(n, r)tr|g|r,p, t > 0.

Proof. Let g ∈ Cr(Ω). Since Dξg =
∑n

i=1 ξi
∂g
∂xi

, and |ξ| = 1, we have that

‖Dξg‖p ≤ |g|1,p. One can see that by induction, Dr
ξg =

∑
|α|=r cαDαg, with |cα| ≤

c(n, r). This implies that ‖Dr
ξg‖p ≤ c(n, r)|g|r,p. Let h ∈ R

n, with 0 < |h| = h1 ≤ t,

ξ := h−1
1 h and denote Ωr,h := {x ∈ Ω : [x, x + rh] ⊂ Ω} Applying (1.9), (1.13)

and then Minkowski’s inequality for 1 ≤ p ≤ ∞, yields

‖∆r
h(g, ·)‖Lp(Ω) = ‖∆r

h(g, ·)‖Lp(Ωh,r)

≤ tr
∥∥
∫

R

Dr
ξg(· + uξ)Nr(u, h1)du

∥∥
Lp(Ωh,r)

≤ tr
∥∥Dr

ξg
∥∥

Lp(Ω)

≤ c(n, r)tr|g|r,p.
Taking supremum over all h ∈ R

n, |h| ≤ t, gives (1.14) for functions in Cr(Ω). For
1 ≤ p < ∞ we apply a standard density argument to obtain (1.14) for the Sobolev
class. �
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Proposition 1.12. [22] Let Ω ⊂ R
n satisfy the Uniform Cone property (see

Definition 1.5) and let 1 ≤ p ≤ ∞ and r ≥ 1. Then there exist constants
C1(Ω, p, n, r), C2(n, r) > 0, such that for any any f ∈ Lp(Ω),

(1.15) C1Kr(f, tr)p ≤ ωr(f, t)p ≤ C2Kr(f, tr)p, 0 < t ≤ diam(Ω).

Proof. To see the right hand side of (1.15), let g be any function in W r
p (Ω).

we apply (1.14) to obtain

ωr(f, t)p ≤ ωr(f − g, t)p + ωr(g, t)p

≤ 2r‖f − g‖p + C(n, r)tr|g|r,p
≤ C(n, r)(‖f − g‖p + tr |g|r,p).

Therefore, by taking the infimum over all such g ∈ W r
p (Ω), we obtain the right

hand side of (1.15). The left hand side is the main result of [22]. We note that
the uniform cone property is a slightly stronger assumption then what is used in
[22]. �

Note that, while C2 in (1.15) depends only on n and r, the constant C1 may
further depend on the geometry of Ω (e.g. the parameters of the Uniform Cone
properties). One can obtain a more specific left-hand side inequalities for convex
domains. A first result for convex domains is

Corollary 1.13. Let Ω ⊂ R
n be a convex domain such that B(0, R1) ⊆ Ω ⊆

B(0, R2), for some fixed 0 < R1 < R2. Then for f ∈ Lp(Ω), 1 ≤ p ≤ ∞, r ≥ 1, and
0 < t ≤ 2R2,

(1.16) C1(r, p, R1, R2)Kr(f, tr)Lp(Ω) ≤ ωr(f, t)Lp(Ω) ≤ C2(n, r)Kr(f, tr)Lp(Ω).

Proof. The right hand side of (1.16) holds by (1.15) for more general domains.
To prove the left hand side inequality one applies Theorem 1.6. �

The second result on the relationship between the modulus of smoothness and
the K-functional over convex domains requires using the ‘local’ polynomial approx-
imation results of the next Chapter. We state it here

Proposition 1.14. [10] Let Ω ⊂ R
n be a bounded convex domain. Then, for

any f ∈ Lp(Ω), 1 ≤ p ≤ ∞, r ≥ 1,

Kr(f, tr) ≤ C(n, r, p)

((
1 − tr

diam(Ω)r

)
µ(Ω, t)−(r−1+1/p) + 1)

)
ωr(f, t)p,

where

µ(Ω, t) := min
x∈Ω

|B(x, t) ∩ Ω|
|B(x, t)| , 0 < t ≤ diam(Ω).

1.3. Algebraic polynomials over domains

Let Πr−1 := Πr−1 = Πr−1(R
n) denote the multivariate polynomials of total

degree r − 1 (order r) in n variables. This is the collection of functions of the
type P (x) =

∑
|α|<r cαxα, where for α ∈ Z

n
+, |α| :=

∑n
i=1 αi, and for x ∈ R

n,

xα :=
∏n

i=1 xαi

i .

Lemma 1.15. Let P ∈ Πr−1 and let Ω1, Ω2 ⊂ R
n, be bounded convex domains

such that Ω1 ⊆ Ω2 and |Ω2| ≤ ρ|Ω1| for some ρ > 1. Then for 0 < p ≤ ∞
∥∥P

∥∥
Lp(Ω2)

≤ C(n, r, p, ρ)
∥∥P

∥∥
Lp(Ω1)

.
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Proof. Let Ax = Mx+ b be the affine transform for which (1.3) holds for Ω1.
Since A−1(Ω1) ⊆ B(0, n) we have

(1.17)
|A−1(Ω2)| = |A−1(Ω1)|

|A−1(Ω2)|
|A−1(Ω1)|

≤ |B(0, n)|ρ := C(n, ρ).

Observe that A−1(Ω2) is a convex domain that contains A−1(Ω1) and therefore also
contains B(0, 1). Together with (1.17) this implies that the diameter of A−1(Ω2)
must be bounded by a constant that depends on n and ρ, i.e., A−1(Ω2) ⊆ B(0, R),
R := R(n, ρ). Hence applying the equivalence of finite dimensional (quasi) normed
spaces we obtain

‖P ‖Lp(Ω2) = | detM |1/p
∥∥P

∥∥
Lp(A−1(Ω2))

≤ | detM |1/p
∥∥P

∥∥
Lp(B(0,R))

≤ C| detM |1/p
∥∥P

∥∥
Lp(B(0,1))

≤ C| detM |1/p
∥∥P

∥∥
Lp(A−1(Ω1))

= C
∥∥P

∥∥
Lp(Ω1)

.

�

Lemma 1.16. For any bounded convex domain Ω ⊂ R
n, P ∈ Πr−1, and 0 <

p, q ≤ ∞, we have

(1.18) ‖P ‖Lq(Ω) ∼ |Ω|1/q−1/p‖P ‖Lp(Ω),

with constants of equivalency depending only on n, r, p, and q.

Proof. Let Ax = Mx + b be the affine transform for which (1.3) holds. Since
A(B(0, 1)) = θ, we get from the properties of John’s ellipsoid, | detM | ∼ |Ω|, with
constants of equivalency depending only on n. Also, by the equivalence of finite
dimensional (quasi) normed spaces, for any polynomial P̃ ∈ Πr−1 we have that

‖P̃‖Lp(B(0,1)) ∼ ‖P̃ ‖Lq(B(0,n)) with constants of equivalency that depend only on

n, r, p, and q. Let P ∈ Πr−1, and denote P̃ := P (A·). Then

‖P ‖Lq(Ω) = | detM |1/q‖P̃ ‖Lq(A−1(Ω))

≤ | detM |1/q
∥∥P̃

∥∥
Lq(B(0,n))

≤ C| detM |1/q
∥∥P̃

∥∥
Lp(B(0,1))

≤ C| detM |1/q
∥∥P̃

∥∥
Lp(A−1(Ω))

≤ C| detM |1/q−1/p
∥∥P

∥∥
Lp(Ω)

≤ C|Ω|1/q−1/p
∥∥P

∥∥
Lp(Ω)

.

�

Proposition 1.17. [26] Let Ω ⊂ R
n be a bounded convex domain. Then, for

1 ≤ p ≤ ∞, any polynomial P ∈ Πr−1, and α ∈ Z
n
+, |α| :=

n∑
i=1

αi ≤ r − 1,

(1.19) ‖∂αP ‖Lp(Ω) ≤ C (n, |α|)width (Ω)
−|α| ‖P ‖Lp(Ω) ,
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where width (Ω) is the diameter of the largest n-dimensional Euclidean ball that is
contained in Ω.

Theorem 1.18. Let Ω ⊂ R
n be a bounded domain and let 1 ≤ p < ∞. Then,

for any P ∈ Πr−1, we have that ωr(P, t)p = 0, 0 < t ≤ diam(Ω). In the other
direction, if Ω is also open and connected and f ∈ Lp(Ω), such that ωr(f, Ω)p = 0
for some r ≥ 1, then there exists a polynomial P ∈ Πr−1 such that f = P a.e. on
Ω.

Proof. The first part is a direct application of the identity (1.13), since it
implies that ∆r

h(P, x) = 0, for any x ∈ Ω, h ∈ R
n. To prove the second part, we

apply the Whitney decomposition of Ω into interior disjoint cubes (see e.g. the
appendix in [20]). Namely, there exist a family of closed cubes {Qk}k, such that:

(i) ∪kQk = Ω, and the cubes Qk, have disjoint interiors,
(ii)

√
nl(Qk) ≤ dist(Qk, Ωc) ≤ 4

√
nl(Qk), where l(Qk) is the side length of

Qk,
(iii) If the boundaries of Qk and Qj touch, then

1

4
≤ l(Qj)

l(Qk)
≤ 4,

(iv) For any Qk, there are at most 12n cubes Qj that touch it.

We now construct from the Whitney decomposition a cover of ‘substantially’ over-
lapping cubes {Q̃k}k, simply by extending the lengths of the cubes symmetrically,

such that l(Q̃k) = 2l(Qk), k ≥ 1. By property (ii) of the Whitney decomposition,

we know that each Q̃k is contained in Ω and thus ∪kQ̃k = Ω. Also, for touching
cubes Qk and Qj, the extensions have a ‘substantial’ intersection, i.e.

|Q̃k ∩ Q̃j | ≥ min{l(Qk)/2, l(Qj)/2}n.

Note that there is a simpler proof for the case 1 ≤ p < ∞, since we can apply
the machinery of the K-functional and Sobolev spaces. Indeed, the equivalence
(1.15) on each extended cube Q̃k, gives

Kr(f, Q̃k)p ≤ Cωr(f, Q̃k)p ≤ Cωr(f, Ω)p = 0.

Thus, there exists a sequence {gj}j, gj ∈ W r
p (Q̃k), such that ‖f − gj‖Lp(Q̃k) +

diam(Q̃k)r |gj|Wr
p (Q̃k) → 0, as j → ∞. Using (1.6), we obtain that {gj}j is Cauchy

sequence in W r
p (Q̃k) and so it converges to g ∈ W r

p (Q̃k), with g = f a.e and

|g|r,p = 0 on Q̃k. We now apply on each cube Q̃k the Bramble-Hilbert Lemma

below (1.36) to conclude that f = g = Pk a.e., for some Pk ∈ Πr−1, on Q̃k, ∀k.
Since Ω is a connected domain, using the ‘substantial’ intersections of the extended
cubes of touching cubes yields that there exists a unique P ∈ Πr−1, such that
P = Pk, ∀k, which concludes the proof for 1 ≤ p < ∞. �

1.4. The Bramble-Hilbert Lemma for convex domains

Given a bounded regular domain Ω ⊂ R
n, our goal is to estimate the degree

of approximation of a function f ∈ Lp(Ω), 0 < p ≤ ∞, by algebraic polynomials of
total degree r − 1,

Er−1(f, Ω)p := inf
P∈Πr−1

∥∥f − P
∥∥

Lp(Ω)
.
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For a star-shaped domain Ω (see Definition 1.4), we denote ρmax := max
{
ρ |

Ω is star-shaped with respect to a ball B ⊆ Ω of radius ρ
}
. The chunkiness

parameter of Ω [3] is defined by

(1.20) γ :=
diam(Ω)

ρmax
.

Note that the chunkiness parameter γ becomes larger in cases where the domain is
longer and thinner. This leads to the following formulation of the Bramble-Hilbert
lemma,

Theorem 1.19. Bramble-Hilbert Lemma for star-shaped domains Let
Ω be a bounded star-shaped with respect to some ball B, with chunkiness parameter
γ, and let g ∈ W r

p (Ω), 1 ≤ p ≤ ∞, r ≥ 1. Then there exists a polynomial P ∈ Πr−1

for which

(1.21) |g − P |k,p ≤ C(n, r)(1 + γ)n diam(Ω)r−k|g|r,p, k = 0, 1 . . . , r − 1.

Before we proceed with the proof of Theorem 1.19, we require some preparation.
Let g ∈ Cr(Ω) and recall that the classical Taylor polynomial of order r (degree
r − 1), at x ∈ Ω, about a point y ∈ B, is given by

(1.22) T r
y g(x) :=

∑

|α|<r

Dαg(y)

α!
(x − y)α,

where α! :=
∏n

i=1 αi!. The Taylor remainder of order r is then given by

(1.23) TRr
yg(x) := r

∑

|α|=r

(x − y)α

α!

∫ 1

0

sr−1Dαg(x + s(y − x))ds,

which is meaningful since the segment [x, y] is contained in Ω. We then have,

g(x) = T r
y g(x) + TRr

yg(x), x ∈ Ω.

Our construction of an approximating polynomial relies on averaging the Taylor
polynomials over the ball B. It can be shown that there exists a cut-off function
φ ∈ C∞, for B(0, 1), with the properties:

(i)
∫

Rn φ(x)dx = 1,
(ii) supp(φ) = B(0, 1),
(iii) ‖φ‖∞ ≤ 1.

For any ball B(x0, ρ), the cut-off function φB := ρ−nφ(ρ−1(· − x0)), satisfies:

(i)
∫

Rn φB(x)dx = 1,
(ii) supp(φB) = B(x0, ρ),
(iii) ‖φB‖∞ ≤ ρ−n.

The Averaged Taylor polynomial of g ∈ Cr(Ω), over B ⊆ Ω, of order r (degree
r − 1), is given by

(1.24) T r
Bg(x) :=

∫

B

T r
y g(x)φB(y)dy, x ∈ Ω.

We also denote the Averaged Taylor remainder by

Rr
Bg(x) := g(x) − T r

Bg(x).
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1.4. THE BRAMBLE-HILBERT LEMMA FOR CONVEX DOMAINS 9

Lemma 1.20. For x ∈ Ω, where Ω is star-shaped with respect to B(x0, ρ) ⊂ Ω,
and g ∈ Cr(Ω),

(1.25) Rr
Bg(x) = r

∑

|α|=r

∫

V (x)

Kα(x, z)Dαg(z)dz,

where V (x) is the convex closure of {x} ∪ B, and Kα = 1
α!(x − z)αK(x, z), with

(1.26) |K(x, z)| ≤ C (γ + 1)
n |x− z|−n, γ =

diam(Ω)

ρ
.

Proof. We fix x ∈ Ω, and observe that by properties (i),(ii) of φB,

Rr
Bg(x) = g(x) − T r

Bg(x)

=

∫

B

(g(x) − T r
y g(x))φB(y)dy

=

∫

B

(TRr
yg(x))φB(y)dy

= r
∑

|α|=r

∫

B

(x − y)α

α!
φB(y)

∫ 1

0

sr−1Dαg(x + s(y − x))dsdy.

We now make the change of variables (y, s) to (z, s) with z = x + s(y − x), and
define the integration domain

A := {(z, s) : s ∈ [0, 1], |s−1(z − x) + x − x0| ≤ ρ},

to obtain

Rr
Bg(x) = r

∑

|α|=r

1

α!

∫

A

(x − z)αφB(s−1(z − x) + x)Dαg(z)s−n−1dzds

= r
∑

|α|=r

∫

V (x)

Dαg(z)
1

α!
(x − z)α

1∫

0

1A(z, s)φB(s−1(z − x) + x)s−n−1dsdz

= r
∑

|α|=r

∫

V (x)

Dαg(z)Kα(x, z)dz,

where

Kα(x, z) :=
1

α!
(x−z)αK(x, z), K(x, z) :=

1∫

0

1A(z, s)φB(s−1(z − x) + x)s−n−1ds.

We now prove the estimate (1.26). Observe that

(z, s) ∈ A ⇒ |z − x|
|x− x0| + ρ

< s.
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So with t := |z − x|/(|x− x0| + ρ) and property (iii) of φB, we get

|K(x, z)| =

∣∣∣∣∣∣

1∫

0

1A(z, s)φB(s−1(z − x) + x)s−n−1ds

∣∣∣∣∣∣

≤ ‖φB‖∞
1∫

t

s−n−1ds

≤ C(n)ρ−nt−n

= C(n)ρ−n|x− z|−n(|x− x0| + ρ)n

= C(n)

(
1 +

1

ρ
|x− x0|

)n

|x− z|−n

≤ C(n) (1 + γ)
n |x− z|−n.

�

We now provide the following commutativity of Taylor polynomials and differenti-
ation

Lemma 1.21. Let A(x) = Mx + b, be a nonsingular affine map, and let g ∈
Cr(Ω). Then, for any x ∈ Ω, and α ∈ Z

n
+, 1 ≤ |α| ≤ r, we have

(1.27) Dα
x

[
T r

y (g(A·))(A−1x)
]

= T r−|α|
y (Dαg(A·))(A−1x),

which implies for a star-shaped domain (with respect to B)

(1.28) Dα
x

[
T r

B(g(A·))(A−1x)
]

= T
r−|α|
B ((Dαg)(A·)(A−1x).

Proof of Theorem 1.19. We first assume that g ∈ Cr(Ω) and diam(Ω) = 1.
We require the followingRiesz potential inequality: for a given h(x) =

∫
Ω |x − z|r−n|f(z)|dz,

where f ∈ Lp(Ω), 1 ≤ p ≤ ∞,

(1.29) ‖h‖Lp(Ω) ≤ C(n, r) diam(Ω)r‖f‖Lp(Ω).

For k = 0, we use (1.25), (1.26) and (1.29) with diam(Ω) = 1, to proceed with

‖g − T r
Bg‖Lp(Ω) = ‖Rr

Bg‖Lp(Ω)

≤ r
∑

|α|=r

∥∥∥∥
∫

Ω

|Kα(x, z)||Dαg(z)|dz

∥∥∥∥
Lp(Ω)

≤ C(n, r)(γ + 1)n
∑

|α|=r

∥∥∥∥
∫

Ω

|x − z|r−n|Dαg(z)|dz

∥∥∥∥
Lp(Ω)

≤ C(n, r)(γ + 1)n|g|Wr
p (Ω).

For 0 < k < r, let α ∈ Z
n
+, with |α| = k and let h := Dαg. Applying (1.28) with

A(x) = x, and the case k = 0, for h, gives

‖Dα(g − T r
Bg)‖Lp(Ω) = ‖h − T r−k

B h‖Lp(Ω)

≤ C(n, r)(γ + 1)n|h|Wr−k
p (Ω)

≤ C(n, r)(γ + 1)n|g|Wr
p (Ω).

Summing up over all α ∈ Z
n
+, with |α| = k, we conclude

|g − T r
Bg|Wk

p (Ω) ≤ C(n, r)(γ + 1)n|g|Wr
p (Ω), k = 0, ..., r− 1.
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1.4. THE BRAMBLE-HILBERT LEMMA FOR CONVEX DOMAINS 11

This finishes the proof for the case g ∈ Cr(Ω) and diam(Ω) = 1. For an arbitrary

bounded domain Ω that is star-shaped with respect to B, let Ω̃ = A−1(Ω), where
A is an affine transform defined through its inverse A−1(x) := 2 diam(Ω)−1(x− x̃),
where x̃ ∈ Ω is the mid-point of the longest segment contained in Ω with length
diam(Ω). This gives that diam(Ω̃) = 1 with Ω̃ star-shaped with respect to A−1(B),
having the same chunkiness parameter γ as Ω. For g̃ := g(A·), by the previous part
in the proof

|g̃ − T r
A−1(B)g̃|Wk

p (Ω̃) ≤ C(n, r)(γ + 1)n|g̃|Wr
p (Ω̃), k = 0, ..., r− 1.

Thus, with P := T r
A−1(B) g̃(A−1·) ∈ Πr−1, we obtain for 1 ≤ p < ∞ (the proof for

p = ∞ is exactly the same with no need for the change of variables)

‖g − P ‖Lp(Ω) =

(
2

diam(Ω)

)1/p

‖g̃ − T r
A−1(B)g̃‖Lp(Ω̃)

≤ C(n, r)

(
2

diam(Ω)

)1/p

(γ + 1)n|g̃|Wr
p (Ω̃)

≤ C(n, r)

(
2

diam(Ω)

)1/p

(γ + 1)n diam(Ω)r
∑

|α|=r

‖Dαg(A·)‖Lp(Ω̃)

= C(n, r)(γ + 1)n diam(Ω)r
∑

|α|=r

‖Dαg‖Lp(Ω)

= C(n, r)(γ + 1)n diam(Ω)r |g|Wr
p (Ω).

For 0 < k < r, let α ∈ Z
n
+, with |α| = k and let h := Dαg, h̃ := h(A·). Applying

(1.28) with the affine transform A defined above, and the case k = 0, for h, gives

‖Dα(g − P )‖Lp(Ω) = ‖h − Dα[T r
A−1(B) g̃(A−1·)]‖Lp(Ω)

= ‖h − T r−k
A−1(B)h̃(A−1·)‖Lp(Ω)

≤ C(n, r)(γ + 1)n diam(Ω)r−k|h|Wr−k
p (Ω)

≤ C(n, r)(γ + 1)n diam(Ω)r−k|g|Wr
p (Ω).

Summing up over all α ∈ Z
n
+, with |α| = k, we conclude

|g − P |Wk
p (Ω) ≤ C(n, r)(γ + 1)n diam(Ω)r−k|g|Wr

p (Ω), k = 0, ..., r− 1.

This concludes the proof for g ∈ Cr(Ω). Since C∞(Ω) is dense in W r
p (Ω),

1 ≤ p < ∞, we may apply a standard density argument to obtain (1.21) for
g ∈ W r

p (Ω). That is, there exists sequences {gk}, gk ∈ Cr(Ω), {Pk}, Pk ∈ Πr−1,
k ≥ 1, for which (1.21) is satisfied and also ‖g − gk‖Wr

p (Ω) → 0. We may then

extract a converging subsequence from {Pk} to P ∈ Πr−1 (e.g in the L∞ norm),
such that (1.21) is satisfied for g with P . �

The Bramble-Hilbert lemma for star-shaped domains implies that for Ω, a
star-shaped domain with respect to some ball B, with chunkiness parameter γ and
f ∈ Lp(Ω), 1 ≤ p ≤ ∞ we have

(1.30) Kr(f, Ω)p ≤ Er−1(f, Ω)p ≤ C(n, r)(γ + 1)nKr(f, Ω)p.
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By (1.15) if we further assume that the domain satisfies the uniform cone condition,
then the equivalence

(1.31) Er−1(f, Ω)p ∼ Kr(f, Ω)p ∼ ωr(f, Ω)p,

holds for 1 ≤ p ≤ ∞ with constants that also depend on the shape of the domain
Ω. An application of Theorem 1.19 is

Theorem 1.22. Let Ω ⊂ R
n be a bounded domain and let A be a nonsingular

affine map such that B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n) and A−1(Ω) is star-shaped with
respect to B(0, 1). Then, for g ∈ W r

p (Ω), r ≥ 1, 1 ≤ p ≤ ∞, there exists a
polynomial P ∈ Πr−1, such that

(1.32) |g − P |Wk
p (Ω) ≤ C(n, r) diam(Ω)r−k|g|Wk

p (Ω), k = 0, 1, ..., r.

For the case of g ∈ Cr(Ω), P (x) = T r
B(0,1)(g(A·))(A−1x), satisfies (1.32).

Proof. Note that we can bound the chunkiness parameter (1.20) as follows

(1.33) γ(Ω) = γ(A−1(Ω)) ≤ 2n.

Since A(x) = Mx + b, maps B(0, 1) into Ω, we get that ‖M‖2 ≤ diam(Ω). This
gives that max1≤i,j≤n |ai,j| ≤ diamΩ, where M = (ai,j)1≤i,j≤n. With g̃ := g(A·) ,

and Ω̃ := A−1(Ω), we get for y ∈ Ω̃, and α ∈ Z
n
+, |α| = k, k = 1, ..., r,

|Dαg̃(y)| ≤ diam(Ω)k
∑

|β|=k

|(Dβg)(Ay)|.

In particular

(1.34)
∑

|α|=r

‖Dαg̃‖Lp(Ω̃) ≤ c(n, r) diam(Ω)r
∑

|α|=r

‖(Dαg)(A·)‖Lp(Ω̃).

We can now prove (1.32) for k=0. Let P̃ := T r
B(0,1)g̃ ∈ Πr−1 and P := P̃ (A−1·).

Then, since the chunkiness parameter of Ω̃ satisfies (1.33), we obtain using (1.21)
and (1.34) for 1 ≤ p < ∞ (the proof for p = ∞ is exactly the same with no need
for the change of variables)

‖g − P ‖Lp(Ω) = | detM |1/p‖g̃ − P̃‖Lp(Ω̃)

≤ c(n, r)| detM |1/p|g̃|Wr
p (Ω̃)

≤ c(n, r)| detM |1/p diam(Ω)r
∑

|α|=r

‖Dαg(A·)‖Lp(Ω̃)

= c(n, r) diam(Ω)r
∑

|α|=r

‖Dαg‖Lp(Ω)

= c(n, r) diam(Ω)r|g|Wr
p (Ω).

For 0 < k < r, we proceed as in the proof of Theorem 1.21. Let α ∈ Z
n
+, with

|α| = k and let h := Dαg, h̃ := h(A·). Applying (1.28) with the affine transform A
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1.4. THE BRAMBLE-HILBERT LEMMA FOR CONVEX DOMAINS 13

defined above, and the case k = 0, for h, gives

‖Dα(g − P )‖Lp(Ω) = ‖h − Dα[T r
B(0,1)g̃(A−1·)]‖Lp(Ω)

= ‖h − T r−k
B(0,1)h̃(A−1·)‖Lp(Ω)

≤ C(n, r) diam(Ω)r−k|h|Wr−k
p (Ω)

≤ C(n, r) diam(Ω)r−k|g|Wr
p (Ω).

Summing up over all α ∈ Z
n
+, with |α| = k, we conclude

|g − P |Wk
p (Ω) ≤ C(n, r) diam(Ω)r−k|g|Wr

p (Ω), k = 0, ..., r− 1.

This concludes the proof for g ∈ Cr(Ω). Since C∞(Ω) is dense in W r
p (Ω),

1 ≤ p < ∞, we may apply a standard density argument to obtain (1.32) for
g ∈ W r

p (Ω).
�

An immediate application of John’s Theorem 1.3 and Theorem 1.22 gives

Corollary 1.23. Bramble-Hilbert Lemma for convex domains Let Ω ⊂
R

n be a bounded convex domain, and let g ∈ W r
p (Ω), r ∈ N, 1 ≤ p ≤ ∞. Then

there exists a polynomial P ∈ Πr−1 for which

(1.35) |g − P |k,p ≤ C(n, r) diam(Ω)r−k|g|r,p, k = 0, 1 . . . , r − 1.

For the case of g ∈ Cr(Ω), P (x) = T r
B(0,1)(g(A·))(A−1x), satisfies (1.35), where

T r
Bh is the averaged Taylor polynomial of h, with respect to a ball B, given by

(1.24). In particular, for the case k = 0, we obtain

(1.36) Er−1(g, Ω)p ≤ C(n, r) diam(Ω)r |g|r,p.

We also get the following for the general case of functions in Lp(Ω),

Corollary 1.24. Let Ω ⊂ R
n be a bounded convex domain, and let f ∈ Lp(Ω),

1 ≤ p ≤ ∞. Then, for any r ≥ 1,

(1.37) Er−1(f, Ω)p ∼ Kr(f, Ω)p,

where the constants of equivalency depend only on n and r and not on f or Ω.

Proof. Let gi ∈ W r
p (Ω), i ≥ 1, be a sequence such that

Kr(f, diam(Ω)r)p = inf
i
{‖f − gi‖p + diam(Ω)r |gi|r,p}.

By (1.35) there exist polynomials Pi ∈ Πr−1, i ≥ 1, such that

‖gi − Pi‖p ≤ C(n, r) diam(Ω)r|gi|r,p.
Therefore

Er−1(f, Ω)p ≤ inf
i
‖f − Pi‖p

≤ inf
i
{‖f − gi‖p + ‖gi − Pi‖p}

≤ inf
i
{‖f − gi‖p + C(n, r) diam(Ω)r |gi|r,p}

≤ C(n, r)Kr(f, diam(Ω)r)p

= C(n, r)Kr(f, Ω)p.
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To prove Kr(f, Ω)p ≤ Er−1(f, Ω)p, let P be an arbitrary polynomial in Πr−1.
Then, it is easy to see using (1.7)

Kr(f, diam(Ω)r)p ≤ ‖f − P ‖p + diam(Ω)r |P |r,p = ‖f − P ‖p.

Since P was chosen arbitrarily, we get that

Kr(f, Ω)p = Kr(f, diam(Ω)r)p ≤ inf
P∈Πr−1

‖f − P ‖p = Er−1(f, Ω)p.

�

1.5. The Whitney Theorem for convex domains

In the previous section, when the polynomial approximation was taking place
in the Lp space, with 1 ≤ p ≤ ∞, we were able to apply the tools of Sobolev spaces
and the K-functional. However, for the case of 0 < p < 1, one needs to directly
estimate ‘local’ low order polynomial approximation over convex domains using the
modulus of smoothness explicitly. The critical emphasis is on estimates where the
leading constant does no depend on the geometry of the domain. The main result
of this section is

Theorem 1.25. Let Ω ⊂ R
n be a bounded convex domain, and let f ∈ Lp(Ω),

0 < p ≤ ∞. Then for any r ≥ 1

(1.38) Er−1(f, Ω)p ≤ C(n, r, p)ωr(f, Ω)p,

where ωr(f, Ω)p is defined in (1.11).

By the first part of Theorem 1.18 we have that ωr(P, Ω)p = 0, for any polyno-
mial P ∈ Πr−1. Thus,

ωr(f, Ω)p ≤ ωr(f − P, Ω)p ≤ C‖f − P ‖p,

which gives

ωr(f, Ω)p ≤ CEr−1(f, Ω)p.

Combining this with (1.37) and (1.38) yields

Corollary 1.26. For all bounded convex domains Ω ⊂ R
n, and functions

f ∈ Lp(Ω), if 1 ≤ p ≤ ∞, then we have the equivalence

(1.39) Er−1(f, Ω)p ∼ Kr(f, Ω)p ∼ ωr(f, Ω)p,

and for 0 < p < 1, the equivalence

(1.40) Er−1(f, Ω)p ∼ ωr(f, Ω)p.

where the constants of equivalency depend only on n,r and p.

We prove Theorem 1.25 separately for 1 ≤ p ≤ ∞, and then for 0 < p < 1.
As we shall see, in the former case, we can use the equivalence of the modulus of
smoothness and the K-functional and then apply the machinery of K-functionals.
In the latter case we have to work significantly harder as the classical K-functional
in Lp, 0 < p < 1, is trivial.
Proof of Theorem 1.25 for the case 1 ≤ p ≤ ∞ Let A(x) = Mx + b be the

affine transform for which (1.3) holds. Corollary 1.24 implies that for Ω̃ := A−1(Ω)

and f̃ := f(A·) there exists a polynomial P̃ ∈ Πr−1 such that
∥∥f̃ − P̃

∥∥
Lp(eΩ)

≤ C(n, r)Kr(f̃ , Ω̃)p.
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Since B(0, 1) ⊆ Ω̃ ⊆ B(0, n), Ω̃ fulfills the conditions of Corollary 1.13 with R1 =

1, R2 = n, we may apply (1.16) with t = diam(Ω̃), to obtain
∥∥f̃ − P̃

∥∥
Lp(Ω̃)

≤ C(n, r)Kr(f̃ , Ω̃)p

≤ C(n, r, p)ωr(f̃ , Ω̃)p.

Denoting P := P̃ (A−1·), yields
∥∥f − P

∥∥
Lp(Ω)

= | detM |1/p
∥∥f̃ − P̃

∥∥
Lp(Ω̃)

≤ C| detM |1/pωr(f̃ , Ω̃)p

= Cωr(f, Ω)p.

This proves Theorem 1.25 for the case 1 ≤ p ≤ ∞. We now turn to the proof of
the Whitney theorem for the case 0 < p < 1 [14]. We first prove the case r = 1

Lemma 1.27. Let Ω ⊂ R
n be a bounded domain and f ∈ Lp(Ω), 0 < p < ∞.

Then there exists a constant c such that

(1.41)

∫

Ω

|f(x) − c|pdx ≤ 1

|Ω|

∫

|h|≤diam(Ω)

∫

Ω

|∆h(f, Ω, x)|pdxdh,

where |Ω| denotes the volume of the domain Ω.

Proof. By a standard density argument, one may assume that f is continuous.
Consider the function φ(y) :=

∫
Ω
|f(x) − f(y)|p dx, y ∈ Ω. Clearly, there exists

y0 ∈ Ω such that

φ(y0) ≤
1

|Ω|

∫

Ω

φ(y) dy.

Therefore with c := f(y0) we get
∫

Ω

|f(x) − c|p dx = φ(y0)

≤ 1

|Ω|

∫

Ω

φ(y) dy

=
1

|Ω|

∫

Ω

∫

Ω

|f(x) − f(y)|p dx dy.

By definition, for any domain Ω and every x ∈ Ω, if x+h 6∈ Ω, then ∆h(f, Ω, x) = 0.
Therefore, the substitution h = y − x yields (1.41). �

Corollary 1.28. Let Ω ⊂ R
n be a bounded convex domain and f ∈ Lp(Ω),

0 < p < ∞. Then there exists a constant c such that

(1.42)
∥∥f − c

∥∥
Lp(Ω)

≤ (2n)n/pω1(f, Ω)p.

Proof. Let Ω̃ := A−1(Ω), where A is the affine transform for which (1.3)

holds. Denote f̃ := f(A·). By Lemma 1.27 there exists a constant c such that
∫

eΩ

∣∣f̃(x) − c
∣∣p dx ≤ 1

|Ω̃|

∫

|h|≤2n

∫

eΩ

|∆h(f̃ , Ω̃, x)|p dx dh.
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Hence ∫

eΩ

|f̃(x) − c|p dx ≤ |B(0, 2n)|
|B(0, 1)| ω1(f̃ , Ω̃)p

p

= (2n)nω1(f̃ , Ω̃)p
p.

As we have seen in the proof of Theorem 1.25 for the case 1 ≤ p ≤ ∞, the Whitney
inequality is invariant under affine maps and therefore the above inequality implies
(1.42). �
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12. G. David, J.-L. Journé, and S. Semmes, Operateurs de Calderon-Zygmund, fonctions para-

accretives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56.

13. S. Dekel and D. Leviatan, The Bramble-Hilbert lemma for convex domains, SIAM J. Math.
Anal. 35 (2004), 1203-1212.

14. S. Dekel and D. Leviatan, Whitney estimates for convex domains with applications to multi-

variate piecewise polynomial approximation, Found. Comp. Math. 4 (2004), 345-368.

15. D. Deng and Y. Han, Harmonic analysis on spaces of homogeneous type, Lecture notes in
mathematics 1966 (2009).

16. R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51-150.
17. R. DeVore and G. Lorentz, Constructive Approximation, Springer-Verlag, 1991.

18. Z. Ditzian, V. H. Hristov, and K. Ivanov, Moduli of smoothness and K-functionals in Lp,

0 < p < 1, Constr. Approx. 11 (1995), 6783.

19. Z. Ditzian and A. Prymak, Ul‘yanov-type inequality for bounded covex sets in R
d, J. of Approx.

Theory 151 (2008), 60-85.

20. L. Grafakos, Classical and modern Fourier analysis, 3rd edition, Springer-Verlag, 2014.
21. F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays

Presented to R. Courant on his 60th Birthday, Interscience, New York, 1948, 187204.
22. H. Johnen and K. Scherer, On the Equivalence of the K-Functional and the Moduli of Con-

tinuity and Some Applications, Lecture Notes in Mathematics 571,119140, Springer-Verlag,
Berlin, 1976.

23. G. Kyriazis, K. Park and P. Petrushev, Anisotropic Franklin bases on polygonal domains,
Math. Nachr. 279 (2006), 1099-1127.

24. P. G. Lemarie, Base dondelettes sur les groupes de Lie stratifies, Bull. Soc. Math. 117 (1989),
211232.

17



18 BIBLIOGRAPHY

25. R. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math.

33 (1979), 257-270.
26. S. Nikolskii, On a certain method of covering domains and inequalities for multivariate poly-

nomials, Mathematica 8 (1966), 345-356.
27. E. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals,

Princeton University Press, 1993.
28. E. Stein, Singular integrals and differentiability properties of functions, Princeton University

Press, 1970.
29. E. A. Storozhenko and P. Oswald, Jacksons theorem in the spaces Lp(Rk), 0 < p < 1, Siberian

Math. J. 19 (1978), 630639.
30. P.L. Ul’yanov, The embedding of certain function classes H

p
ω, Math. USSR-Izv. 2 (1968)

601637 (translated from Izv. Akad. Nauk SSSR 32 (1968) 649686).
31. A. Wang, W. Wang, X. Wang and B. Li, ”Maximal function charaterization of Hardy spaces

on R
n with pointwise variable anisotropy, preprint.


