Introduction to function spaces - lecture notes: Semester B (Spring 2021) Shai Dekel

Banach Spaces

Definition Banach space is a complete normed vector space B over a field $F = \{\mathbb{R}, \mathbb{C}\}$,

Vector space: $\exists 0 \in B, \forall f, g \in B, \alpha, \beta \in F \Rightarrow \alpha f + \beta g \in B$.

Complete: Every Cauchy sequence in B converges to an element of B.

Norm:

- i. $f \neq 0 \Rightarrow ||f|| > 0$
- ii. $\|\alpha f\| = |\alpha| \|f\|, \quad \forall \alpha \in F,$
- iii. Triangle inequality $||f + g|| \le ||f|| + ||g||$

Measure

In this course we shall mostly use the standard Lebesgue measure – the volume of a (measurable) set.

Examples:
$$\Omega = [0,2]^n \subset \mathbb{R}^n$$
, $\mu(\Omega) = |\Omega| = 2^n$.

But in some cases we will use the notation of 'abstract' measure space. That is (X, μ) , where for a measurable $E \subseteq X$, $\mu(E)$ is the measure ('volume'), and for measurable function $f: X \to \mathbb{C}$, we can evaluate $\int_{\mathbb{C}} f(x) d\mu(x)$.

Example for weight measure: Let $w: \mathbb{R}^n \to \mathbb{R}_+$, $\int_{\mathbb{R}^n} w(x) dx = 1$. Then we can define $d\mu(x) := w(x) dx$.

We will need the notion of zero measure (volume). Example: a set of discrete points.

In the course we will also study distributions. These are linear functionals on 'smooth' functions. For example, the **Dirac**:

$$\langle \delta_{x_0}, f \rangle = \delta_{x_0}(f) := f(x_0), \quad \forall x_0 \in \mathbb{R}^n, f \in C(\mathbb{R}^n).$$

Sometimes the Dirac is regarded as a 'function' with value ∞ at x_0 . This is misleading and not well defined. It

is indeed the 'limit' of a sequence $g_t(x) := a_t e^{\frac{|x|^2}{t}}$, $\int g_t = 1$, $t \to 0$, but as functionals $\langle g_t, f \rangle \xrightarrow{t \to 0} \langle \delta_0, f \rangle$.

Radon measure – compatible with topology of space

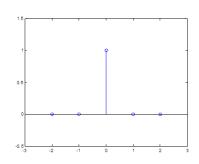
- i. σ -measurable on Borel sets,
- ii. locally finite (every point has a neighborhood of finite measure),
- iii. inner regular (measure of a set can be approximated by measure of compact sets)

Lp Spaces

 $\Omega \subseteq \mathbb{R}^n$ domain. Examples: $\Omega = [a,b] \subset \mathbb{R}$, $\Omega = [0,1]^n \subset \mathbb{R}^n$, $\Omega = \mathbb{R}^n$.

$$||f||_{L_{p}(\Omega)} := \begin{cases} \left(\int_{\Omega} |f(x)|^{p} dx \right)^{1/p}, & 0$$

$$ess \sup_{x} |f(x)| := \sup_{A>0} \{A>0: |\{x: |f(x)| \ge A\}| > 0\}.$$



 $1 \le p \le \infty$ Banach spaces

0 Quasi-Banach spaces (quasi-triangle inequality holds)

$$||f+g||_p^p \le ||f||_p^p + ||g||_p^p.$$

Theorem [Hölder] $1 \le p \le \infty$, $f \in L_p(\Omega)$, $g \in L_{p'}(\Omega)$

$$\left| \int_{\Omega} fg \right| \le \int_{\Omega} \left| fg \right| = \left\| fg \right\|_{1} \le \left\| f \right\|_{p} \left\| g \right\|_{p'} \qquad \frac{1}{p} + \frac{1}{p'} = 1.$$

Lemma Young's inequality for products,

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'}, \qquad \frac{1}{p} + \frac{1}{p'} = 1, \ \forall a, b \ge 0.$$

Proof of lemma The logarithmic function is concave. Therefore

$$\log\left(\frac{1}{p}a^{p} + \frac{1}{p'}b^{p'}\right) = \log\left(\frac{1}{p}a^{p} + \left(1 - \frac{1}{p}\right)b^{p'}\right)$$

$$\geq \frac{1}{p}\log(a^{p}) + \frac{1}{p'}\log(b^{p'})$$

$$= \log(a) + \log(b) = \log(ab).$$

Since the logarithmic function is increasing, we are done (or we take exp on both sides).

Proof of theorem If $p = \infty$

$$\int_{\Omega} |fg| \le ||f||_{\infty} \int_{\Omega} |g| \le ||f||_{\infty} ||g||_{1}.$$

The proof is similar for p = 1. So, assume now $1 , <math>||f||_p = ||g||_{p'} = 1$.

Integrating pointwise and applying Young's inequality almost everywhere, gives

$$\int_{\Omega} |f(x)g(x)| dx \le \int_{\Omega} \left(\frac{|f(x)|^p}{p} + \frac{|g(x)|^{p'}}{p'} \right) dx$$

$$= \frac{1}{p} \int_{\Omega} |f(x)|^p dx + \frac{1}{p'} \int_{\Omega} |g(x)|^{p'} dx$$

$$= \frac{1}{p} + \frac{1}{p'} = 1.$$

Now assuming $f, g \neq 0$ (else, we're done)

$$\int_{\Omega} \frac{\left| f(x) \right|}{\left\| f \right\|_{p}} \frac{\left| g(x) \right|}{\left\| g \right\|_{p'}} dx \le 1 \Longrightarrow \int_{\Omega} \left| fg \right| \le \left\| f \right\|_{p} \left\| g \right\|_{p'}$$

Schwartz inequality p = 2

$$\left|\left\langle f,g\right\rangle_{2}\right|=\left|\int_{\Omega}f\overline{g}\right|\leq\int_{\Omega}\left|fg\right|=\left\|fg\right\|_{1}\leq\left\|f\right\|_{2}\left\|g\right\|_{2}.$$

The L_p spaces not comparable on unbounded domains

Example We'll use $\Omega = \mathbb{R}$. Assume $0 < q < p < \infty$

Choose

$$f(x) := \begin{cases} 0 & |x| \le 1\\ \frac{1}{|x|^{1/q}} & |x| > 1 \end{cases}$$

We have $f \in L_p(\mathbb{R})$, $f \notin L_q(\mathbb{R})$

Now choose

$$f(x) := \begin{cases} \frac{1}{|x|^{1/p}} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$

We have $f \in L_q(\mathbb{R})$, $f \notin L_p(\mathbb{R})$

Theorem If $|\Omega| < \infty$, 0 < q < p, $f \in L_p(\Omega)$ then

$$\|f\|_{L_q(\Omega)} \le |\Omega|^{1/q-1/p} \|f\|_{L_p(\Omega)}.$$

Proof Define $r := p / q \ge 1$

$$\begin{aligned} \|f\|_{q}^{q} &= \int_{\Omega} |f|^{q} = \int_{\Omega} |f|^{q} \, \mathbb{1} \underset{Holder}{\leq} \left(\int_{\Omega} \left(|f|^{q} \right)^{r} \right)^{1/r} \left(\int_{\Omega} \mathbb{1}^{r'} \right)^{1/r'} \\ &= \left(\int_{\Omega} |f|^{p} \right)^{q/p} \left| \Omega \right|^{1-q/p} \end{aligned}$$

Theorem Minkowski for Lp spaces $1 \le p \le \infty$, $f, g \in L_p$,

$$||f+g||_p \le ||f||_p + ||g||_p$$
.

Proof for $1 (<math>p = 1, \infty$ is easier). W.l.g $f, g \ge 0$. We apply Hölder twice,

$$\begin{split} \int & \left(f + g \right)^{p} = \int f \left(f + g \right)^{p-1} + \int g \left(f + g \right)^{p-1} \\ & \leq \left(\left\| f \right\|_{p} + \left\| g \right\|_{p} \right) \left(\int \left(f + g \right)^{(p-1)p'} \right)^{1/p'} \\ & = \left(\left\| f \right\|_{p} + \left\| g \right\|_{p} \right) \left(\int \left(f + g \right)^{p} \right)^{1-1/p} \\ & = \left(\left\| f \right\|_{p} + \left\| g \right\|_{p} \right) \left(\int \left(f + g \right)^{p} \right) \underbrace{\left(\int \left(f + g \right)^{p} \right)^{-1/p}}_{\left\| f + g \right\|_{p}^{1}}. \end{split}$$

п

Thm For 0 , we have

(i)
$$\left\| \sum_{k} f_{k} \right\|_{p}^{p} \leq \sum_{k} \left\| f_{k} \right\|_{p}^{p}$$

(ii)
$$\|f + g\|_p \le 2^{1/p-1} (\|f\|_p + \|g\|_p)$$
 or in general $\|\sum_{k=1}^N f_k\|_p \le N^{1/p-1} \sum_{j=1}^N \|f_k\|_p$

Proof The quasi-triangle inequality (ii) is derived from (i), by using $1 \le p^{-1} < \infty$,

$$\left\| \sum_{k=1}^{N} f_{k} \right\|_{p} \leq \left(\sum_{k=1}^{N} \left\| f_{k} \right\|_{p}^{p} \right)^{1/p} = \left(\sum_{j=1}^{N} 1 \cdot \left\| f_{k} \right\|_{p}^{p} \right)^{1/p} \leq \sum_{\substack{\text{Discrete} \\ \text{Holder}}} \left(\sum_{k=1}^{N} 1^{\frac{1}{1-p}} \right)^{(1-p)1/p} \left(\sum_{k=1}^{N} \left\| f_{k} \right\|_{p} \right) = N^{1/p-1} \sum_{k=1}^{N} \left\| f_{k} \right\|_{p}$$

To prove (i), we need the following lemma

Lemma I For $0 and any sequence of non-negative <math>a = \{a_k\}$,

$$\left(\sum_{k} a_{k}\right)^{p} \leq \sum_{k} a_{k}^{p}$$

Proof We first prove $(a_1 + a_2)^p \le a_1^p + a_2^p$ and then apply induction.

To prove the inequality use $h(t) := t^p + 1 - (t+1)^p$. h(0) = 0 and $h'(t) = pt^{p-1} - p(t+1)^{p-1} \ge 0$. Therefore, $h(t) \ge 0$, for $t \ge 0$. This gives $t^p + 1 \ge (t+1)^p$. Setting $t = a_1 / a_2$ gives

$$\left(\frac{a_1}{a_2}\right)^p + 1 \ge \left(\frac{a_1}{a_2} + 1\right)^p \Longrightarrow a_1^p + a_2^p \ge \left(a_1 + a_2\right)^p.$$

Proof of Theorem (i): Simply apply the lemma pointwise for $x \in \Omega$

$$\left\| \sum_{k} f_{k} \right\|_{p}^{p} \leq \int_{\Omega} \left(\sum_{k} \left| f_{k} \left(x \right) \right| \right)^{p} dx \leq \int_{\Omega} \left(\sum_{k} \left| f_{k} \left(x \right) \right|^{p} \right) dx = \sum_{k} \int_{\Omega} \left| f_{k} \left(x \right) \right|^{p} dx = \sum_{k} \left\| f_{k} \right\|_{p}^{p}.$$

Definition The space $l_p\left(\mathbb{Z}\right),\ 0 , is the space of sequences <math>a = \left\{a_k\right\}_{k \in \mathbb{Z}}$, for which the norm is finite

$$\left\|a\right\|_{l_p} := \begin{cases} \left(\sum_{k} \left|a_{k}\right|^{p}\right)^{1/p}, & 0$$

Lemma II $l_p \subset l_q$ for $p \le q$. That is, for any sequence $a = \{a_k\}$

$$||a||_{l_a} \le ||a||_{l_n}$$
.

Proof Case of $q = \infty$, for any $j \in \mathbb{Z}$,

$$|a_j| = (|a_j|^p)^{1/p} \le (\sum_k |a_k|^p)^{1/p} = ||a||_{l_p}.$$

Therefore,

$$||a||_{l_{\infty}} = \sup_{j} |a_{j}| \leq ||a||_{l_{p}}.$$

For $q < \infty$, we have

$$\left(\sum_{k}\left|a_{k}\right|^{q}\right)^{p/q} \leq \sum_{k}\left(\left|a_{k}\right|^{q}\right)^{p/q} = \sum_{k}\left|a_{k}\right|^{p} \Longrightarrow \left(\sum_{k}\left|a_{k}\right|^{q}\right)^{1/q} \leq \left(\sum_{k}\left|a_{k}\right|^{p}\right)^{1/p}.$$

Hilbert spaces and $L_2(\Omega)$

Def Hilbert space H: Complete metric vector space induced by an inner product $\langle , \rangle : H \times H \to \mathbb{C}$. Properties of the inner product:

- i. symmetric $\langle f, g \rangle = \overline{\langle g, f \rangle}$
- ii. linear $\langle \alpha f_1 + \beta f_2, g \rangle = \alpha \langle f_1, g \rangle + \beta \langle f_2, g \rangle$,
- iii. Positive definite $\langle f, f \rangle \ge 0$, with $\langle f, f \rangle = 0 \Leftrightarrow f = 0$.

The natural norm $\|f\|_{H} := \langle f, f \rangle^{1/2}$ satisfies

(i) Cauchy-Schwartz

$$|\langle f, g \rangle| \le ||f||_H ||g||_H$$

(ii) Triangle inequality

$$||f+g||^2 = ||f||^2 + 2\langle f,g\rangle + ||g||^2 \le ||f||^2 + 2||f||||g|| + ||g||^2 = (||f|| + ||g||)^2$$

So an Hilbert space is a Banach space.

Examples

(i)
$$l_2(\mathbb{Z}) : \langle \alpha, \beta \rangle_{l_2} \coloneqq \sum_{i \in \mathbb{Z}} \alpha_i \overline{\beta}_i , \|\alpha\|_2 \coloneqq \left(\sum_{i \in \mathbb{Z}} |\alpha_i|^2\right)^{1/2}$$

(ii)
$$L^{2}(\Omega): f, g \text{ measurable, } \langle f, g \rangle = C_{\Omega} \int_{\Omega} f(x) \overline{g(x)} dx$$
,

$$||f||_{L_2(\Omega)} = ||f||_2 = \langle f, f \rangle^{1/2} = \left(C_{\Omega} \int_{\Omega} |f(x)|^2 dx \right)^{1/2}.$$

For
$$\Omega = \mathbb{R}^n$$
, $C_{\Omega} = 1$. For $\Omega = \left[-\pi, \pi\right]^n$, $C_{\Omega} = \frac{1}{\left(2\pi\right)^n}$.

The distribution function

Definition For (a measurable) $f: \mathbb{R}^n \to \mathbb{C}$, define $d_f: [0, \infty) \to [0, \infty]$, by

$$d_f(\alpha) := \left| \left\{ x \in \mathbb{R}^n : \left| f(x) \right| > \alpha \right\} \right|.$$

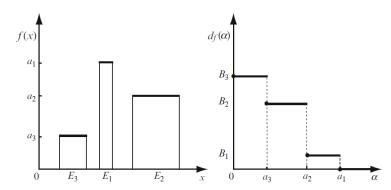


Fig. 1.1 The graph of a simple function $f = \sum_{k=1}^{3} a_k \chi_{E_k}$ and its distribution function $d_f(\alpha)$. Here $B_j = \sum_{k=1}^{j} \mu(E_k)$.

Properties

(i) If $|g(x)| \le |f(x)|$ a.e, then $d_g(\alpha) \le d_f(\alpha)$.

Easy to see since for any $\alpha > 0$, if $|g(x)| > \alpha \Rightarrow |f(x)| > \alpha$, for a. e, $x \in \mathbb{R}^n$, which implies

$$d_{f}(\alpha) = \left|\left\{x \in \mathbb{R}^{n} : \left|f(x)\right| > \alpha\right\}\right| \ge \left|\left\{x \in \mathbb{R}^{n} : \left|g(x)\right| > \alpha\right\}\right| = d_{g}(\alpha).$$

(ii) $d_{cf}(\alpha) = d_f(\alpha/|c|), \forall c \neq 0 \text{ (assignment)}$

(iii)
$$d_{f+g}(\alpha+\beta) \le d_f(\alpha) + d_g(\beta)$$
 (assignment).

In the next theorem you may identify $X = \mathbb{R}^n$, $d\mu = dx$.

Theorem For $f \in L_p(X, d\mu)$, 0 ,

$$||f||_p^p = \int_X |f|^p d\mu = p \int_0^\infty \alpha^{p-1} d_f(\alpha) d\alpha.$$

Proof

$$p\int_{0}^{\infty} \alpha^{p-1} d_{f}(\alpha) d\alpha = p\int_{0}^{\infty} \alpha^{p-1} \left(\int_{X} \mathbf{1}_{\{x \mid f(x) \mid > \alpha\}} (x) d\mu(x) \right) d\alpha$$

$$= \int_{X} \left(\int_{0}^{|f(x)|} p\alpha^{p-1} d\alpha \right) d\mu(x)$$

$$= \int_{X} |f(x)|^{p} d\mu(x)$$

$$= ||f||_{L_{p}(X)}^{p}$$

Weak L_n spaces

Definition For $0 , <math>L_{p,\infty}$, the weak L_p space is defined as the set of all measurable functions $f: X \to \mathbb{C}$, such that there exists $0 < M < \infty$, such that

$$d_f(\alpha)^{1/p} \alpha \leq M, \forall \alpha > 0.$$
 (*)

We also define $\|f\|_{L_{p,\infty}} \coloneqq \inf_{M \text{ satisfies }^*} M = \sup_{\alpha > 0} d_f(\alpha)^{1/p} \alpha$. For $p = \infty$, we define $L_{\infty,\infty} \coloneqq L_{\infty}$.

Example $X = \mathbb{R}^n$, $f(x) = |x|^{-n/p}$, $p < \infty$. It is easy to see $f \notin L_p$. However,

$$d_f(\alpha) = \left| \left\{ x \in \mathbb{R}^n : \left| x \right|^{-n/p} > \alpha \right\} \right|$$
$$= \left| \left\{ x \in \mathbb{R}^n : \left| x \right| < \alpha^{-p/n} \right\} \right|$$
$$= \left| B(0,1) \right| \alpha^{-p},$$

where $B(x,r) := \{ y \in \mathbb{R}^n : |y-x| < r \}$. This gives that

$$\|f\|_{L_{p,\infty}} = \sup_{\alpha} d_{\alpha} (f)^{1/p} \alpha = |B(0,1)|^{1/p} < \infty.$$

Theorem For $0 , <math>L_{p,\infty}$ is a quasi-Banach space

Proof Let $f, g \in L_{p,\infty}$. By the properties of the distribution function, for $1 \le p < \infty$,

$$\begin{split} \left\| f + g \right\|_{L_{p,\infty}} &= \sup_{\alpha > 0} d_{f+g} \left(2\alpha \right)^{1/p} \left(2\alpha \right) \\ &\leq 2 \sup_{(iii)} \left(d_f \left(\alpha \right) + d_g \left(\alpha \right) \right)^{1/p} \alpha \\ &\leq 2 \sup_{\alpha > 0} \left(d_f \left(\alpha \right)^{1/p} \alpha + d_g \left(\alpha \right)^{1/p} \alpha \right) \\ &\leq 2 \left(\sup_{\alpha > 0} d_f \left(\alpha \right)^{1/p} \alpha + \sup_{\beta > 0} d_g \left(\beta \right)^{1/p} \beta \right) \\ &\leq 2 \left(\left\| f \right\|_{L_{p,\infty}} + \left\| g \right\|_{L_{p,\infty}} \right). \end{split}$$

For $0 , with the same method, we get <math>||f + g||_{L_{p,\infty}} \le 2^{1/p} (||f||_{L_{p,\infty}} + ||g||_{L_{p,\infty}})$.

Theorem For $0 , <math>\|f\|_{p,\infty} \le \|f\|_p$, and hence $L_p \subset L_{p,\infty}$

Proof The proof is a direct consequence of the Chebyshev inequality. Let $f \in L_p$. For any $\alpha > 0$

$$d_{f}(\alpha)\alpha^{p} = \left|\left\{x \in \mathbb{R}^{n} : \left|f(x)\right| > \alpha\right\}\right|\alpha^{p}$$

$$\leq \int_{\left\{x \in \mathbb{R}^{n} : \left|f(x)\right| > \alpha\right\}} \left|f(x)\right|^{p} dx$$

$$\leq \int_{\mathbb{R}^{n}} \left|f(x)\right|^{p} dx = \left\|f\right\|_{p}^{p}.$$

First Glimpse into interpolation (of function spaces)

Theorem Let $0 , and <math>f \in L_{p,\infty} \cap L_{q,\infty}$. Then, $f \in L_r$, for all p < r < q and

$$\left\|f\right\|_{r} \le \left(\frac{r}{r-p} + \frac{r}{q-r}\right)^{1/r} \left\|f\right\|_{p,\infty}^{\frac{1/r-1/q}{1/p-1/q}} \left\|f\right\|_{q,\infty}^{\frac{1/p-1/r}{1/p-1/q}}.$$

This implies that if $f \in L_p \cap L_q$, then

$$||f||_r \le \left(\frac{r}{r-p} + \frac{r}{q-r}\right)^{1/r} ||f||_p^{\frac{1/r-1/q}{1/p-1/q}} ||f||_q^{\frac{1/p-1/r}{1/p-1/q}}.$$

Proof The case $q = \infty$ is easier. Recall $L_{\infty,\infty} := L_{\infty}$. So, we need to prove

$$||f||_r \le \left(\frac{r}{r-p}\right)^{1/r} ||f||_{p,\infty}^{\frac{1/r}{1/p}} ||f||_{\infty}^{\frac{1/p-1/r}{1/p}}.$$

Since $d_f(\alpha) = 0$ for $\alpha > ||f||_{\infty}$,

$$\begin{split} \left\|f\right\|_{r}^{r} &= r \int_{0}^{\left\|f\right\|_{\infty}} \alpha^{r-1} d_{f}\left(\alpha\right) d\alpha \\ &\leq r \int_{0}^{\left\|f\right\|_{\infty}} \alpha^{r-1} \frac{\left\|f\right\|_{p,\infty}^{p}}{\alpha^{p}} d\alpha \\ &= r \int_{0}^{\left\|f\right\|_{\infty}} \alpha^{r-1-p} \left\|f\right\|_{p,\infty}^{p} d\alpha \\ &= \frac{r}{r-p} \left\|f\right\|_{p,\infty}^{p} \left\|f\right\|_{\infty}^{r-p}. \end{split}$$

Let $0 < q < \infty$. We know that

$$d_{f}(\alpha) \leq \min\left(\frac{\|f\|_{p,\infty}^{p}}{\alpha^{p}}, \frac{\|f\|_{q,\infty}^{q}}{\alpha^{q}}\right).$$

For

$$B \coloneqq \left(\frac{\|f\|_{q,\infty}^q}{\|f\|_{p,\infty}^p}\right)^{\frac{1}{q-p}},$$

we have that

$$\alpha \leq B \Leftrightarrow \alpha \leq \left(\frac{\|f\|_{q,\infty}^q}{\|f\|_{p,\infty}^p}\right)^{\frac{1}{q-p}} \Leftrightarrow \alpha^{q-p} \leq \frac{\|f\|_{q,\infty}^q}{\|f\|_{p,\infty}^p} \Leftrightarrow \frac{\|f\|_{p,\infty}^p}{\alpha^p} \leq \frac{\|f\|_{q,\infty}^q}{\alpha^q}.$$

Then

$$\begin{split} & \left\|f\right\|_r^r = r \int_0^\infty \alpha^{r-1} d_f\left(\alpha\right) d\alpha \\ & \leq r \int_0^\infty \alpha^{r-1} \min\left(\frac{\left\|f\right\|_{p,\infty}^p}{\alpha^p}, \frac{\left\|f\right\|_{q,\infty}^q}{\alpha^q}\right) d\alpha \\ & = r \int_0^B \alpha^{r-1-p} \left\|f\right\|_{p,\infty}^p d\alpha + r \int_B^\infty \alpha^{r-1-q} \left\|f\right\|_{q,\infty}^q d\alpha \\ & = \sum_{r-p>0, r-q<0}^r \frac{r}{r-p} \left\|f\right\|_{p,\infty}^p B^{r-p} + \frac{r}{q-r} \left\|f\right\|_{q,\infty}^q B^{r-q} \\ & = \left(\frac{r}{r-p} + \frac{r}{q-r}\right) \left(\left\|f\right\|_{p,\infty}^p\right)^{\frac{q-r}{q-p}} \left(\left\|f\right\|_{q,\infty}^q\right)^{\frac{r-p}{q-p}}. \end{split}$$

This gives

$$\begin{split} \left\| f \right\|_{r} & \leq \left(\frac{r}{r-p} + \frac{r}{q-r} \right)^{1/r} \left\| f \right\|_{p,\infty}^{\frac{p(q-r)}{r(q-p)}} \left\| f \right\|_{q,\infty}^{\frac{q(r-p)}{r(q-p)}} \\ & = \left(\frac{r}{r-p} + \frac{r}{q-r} \right)^{1/r} \left\| f \right\|_{p,\infty}^{\frac{1/r-1/q}{1/p-1/q}} \left\| f \right\|_{q,\infty}^{\frac{1/p-1/r}{1/p-1/q}}. \end{split}$$

First Glimpse into Hardy spaces

 $\Omega = \mathbb{R}^n$, Laplace operator

$$L = -\Delta := -\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}.$$

The Heat equation u(x,t)

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, \\ u(x,0) = f(x). \end{cases}$$

The Gaussian (heat) Kernels satisfy the Heat equation

$$\varphi_{t}(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^{2}/4t}, \qquad \int_{\mathbb{R}^{n}} \varphi_{t}(x) dx = 1, \qquad t > 0.$$

Convolution $f, g \in L_1(\mathbb{R}^n), f * g(x) := \int_{\mathbb{R}^n} f(x-y)g(y)dy$.

- (i) By change of variables, it is easy to see f * g = g * f.
- (ii) $f, g \in L_1(\mathbb{R}^n) \Rightarrow f * g \in L_1(\mathbb{R}^n)$

Semi-group $\varphi_t * \varphi_s = \varphi_{t+s}, \quad t, s > 0.$

Theorem If f is continuous and bounded then

$$u(x,t) = \varphi_t * f(x) = \int_{\mathbb{R}^n} f(y) \varphi_t(x-y) dy,$$

solves the Heat equation with initial conditions f.

Sketch Easy to see

$$\left(\frac{\partial}{\partial t} - \Delta\right) u(x,t) = \int_{\mathbb{R}^n} \left(\frac{\partial}{\partial t} - \Delta\right) \varphi_t(x-y) f(y) dy = 0.$$

$$u(x,t) = \varphi_t * f(x) \underset{t \to 0}{\longrightarrow} f(x).$$

Maximal function

$$M_{\varphi}f(x) := \sup_{t>0} |u(x,t)| = \sup_{t>0} |\varphi_t * f(x)|, \quad \forall x \in \mathbb{R}^n.$$

Typical questions

- (i) If we know that $f \in L_p(\mathbb{R}^n)$, $1 \le p \le \infty$, what can we say about the solution? In other words, can we bound $\|M_{\varphi}f\|_p$?
- (ii) If f is a functional acting on 'smooth' functions, then $\varphi_t * f(x) := \langle f, \varphi_t(x \cdot) \rangle$ is well defined for every $x \in \mathbb{R}^n$. When can we say something about $M_{\varphi}f$?

The Schwartz Class

Let $\varphi: \mathbb{R}^n \to \mathbb{C}$. A partial derivative of order m

$$\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n, \quad \partial^{\alpha} \varphi := \frac{\partial^m \varphi}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}, \quad |\alpha| := \sum_{i=1}^n \alpha_i = m.$$

Properties of multivariate monomials:

(i)
$$x^{\alpha} := \prod_{i=1}^{n} x_i^{\alpha_i}, \quad x \in \mathbb{R}^n, \ \alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_+^n.$$

(ii) For any
$$\alpha \in \mathbb{Z}_+^n$$
, $\left| x^{\alpha} \right| \le C(n, \alpha) \left| x \right|^{|\alpha|}$, where $\left| x \right| := \sqrt{\sum_{i=1}^n x_i^2}$.

Proof Define $\phi(x) := x^{\alpha}$. This function is continuous and so let $C(n,\alpha) := \|\phi\|_{L_{\infty}(\overline{B(0,1)})} < \infty$, where

 $B(0,1) := \{x \in \mathbb{R}^n : |x| < 1\}$. Thus, $|x^{\alpha}| \le C(n,\alpha)$, $\forall x \in \overline{B(0,1)}$. For arbitrary $0 \ne x \in \mathbb{R}^n$,

$$\frac{x}{|x|} \in \overline{B(0,1)} \Longrightarrow \left| \left(\frac{x}{|x|} \right)^{\alpha} \right| \le C \Longrightarrow \frac{|x^{\alpha}|}{|x|^{|\alpha|}} \le C \Longrightarrow |x^{\alpha}| \le C |x|^{|\alpha|}.$$

(iii) [Inverse] For any $k \ge 1$, $\exists C(n,k) > 0$, such that

$$|x|^k \le C(n,k) \sum_{|\alpha|=k} |x^{\alpha}|.$$

Proof We claim $C(n,k)^{-1} := \min_{|x|=1} \sum_{|\alpha|=k} |x^{\alpha}| > 0$. Several ways to see this.

a. For any $x \in \mathbb{R}^n$, |x| = 1

$$\sum_{|\alpha|=k} \left| x^{\alpha} \right| \ge \sum_{i=1}^{n} \left| x_i \right|^k > 0.$$

If $\inf_{|x|=1} \sum_{|\alpha|=k} |x^{\alpha}| = 0$, then since $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : |x|=1\}$ is compact, we arrive at a contradiction by

$$\inf_{|x|=1} \sum_{|\alpha|=k} \left| x^{\alpha} \right| = 0 \Longrightarrow \min_{|x|=1} \sum_{|\alpha|=k} \left| x^{\alpha} \right| = 0 \Longrightarrow \exists x \in \mathbb{R}^n, \left| x \right| = 1, \ \sum_{i=1}^n \left| x_i \right| = 0.$$

b. Similar approach: use the equivalence of finite dimensional Banach spaces $l_k(n) \sim l_2(n)$:

$$\sum_{|\alpha|=k} |x^{\alpha}| \ge \sum_{i=1}^{n} |x_{i}|^{k} = |x|_{k}^{k} \ge C(n,k)^{-1} |x|_{2}^{k} = C(n,k)^{-1}.$$

Then, $\forall x \in \mathbb{R}^n \setminus \{0\}$

$$\sum_{|\alpha|=k} \left| \left(\frac{x}{|x|} \right)^{\alpha} \right| \ge C(n,k)^{-1} \Longrightarrow |x|^{k} \le C(n,k) \sum_{|\alpha|=k} |x^{\alpha}|$$

Definition $C^m(\Omega)$: The space of all continuously differentiable functions of order m in the classical sense.

$$\|\varphi\|_{C^m(\Omega)} := \sum_{|\alpha| \le m} \|\partial^{\alpha} \varphi\|_{L_{\infty}(\Omega)} < \infty.$$

The *semi-norm* (there could be elements $f \in C^m(\Omega)$, |f| = 0, $f \neq 0$)

$$\leftert arphi
ightert_{C^m(\Omega)} \coloneqq \sum_{ert arphi = m} \left\Vert \partial^lpha arphi
ight
Vert_{\infty}.$$

Example $C^m[a,b]$ Then $\|\varphi\|_{C^m[a,b]} = \sum_{k=0}^m \|\varphi^{(k)}\|_{\infty}$ is a norm, $\|\varphi\|_{C^m[a,b]} = \|\varphi^{(m)}\|_{L_{\infty}[a,b]}$ is a semi-norm with the polynomials of degree m-1 as a null-space.

Def The Schwartz class S, is the set of C^{∞} functions $\varphi: \mathbb{R}^n \to \mathbb{C}$, such that for all $\alpha, \beta \in \mathbb{Z}_+^n$, there exists $C_{\omega}(\alpha, \beta) > 0$, such that

$$\sup_{x\in\mathbb{R}^n}\left|x^\alpha\partial^\beta\varphi(x)\right|\leq C_\varphi(\alpha,\beta).$$

The set $\{C_{\varphi}(\alpha,\beta)\}$ is called the set of Schwartz semi-norms of φ .

Examples/properties

- (i) $e^{-|x|^2} \in S$ because it is in C^{∞} and decays faster than any polynomial.
- (ii) $e^{-|x|} \notin S$, it is not C^{∞} .
- (iii) $C_0^{\infty}(\mathbb{R}^n) \subset S(\mathbb{R}^n)$ (compactly supported smooth functions)
- (iv) Alternative definition (assignment). For any $\alpha \in \mathbb{Z}_+^n$, and N > 0, $\exists C_{\varphi}(\alpha, N) > 0$ such that

$$\left|\partial^{\alpha}\varphi(x)\right| \leq C_{\varphi}(\alpha,N)(1+|x|)^{-N}.$$

(v)
$$\varphi_k \underset{S}{\to} \varphi$$
, as $k \to \infty$, if $\sup_{x \in \mathbb{R}^n} |x^{\alpha} \hat{c}^{\beta} (\varphi - \varphi_k)(x)| \to 0$, $\forall \alpha, \beta \in \mathbb{Z}^0_+$.

(vi) $\varphi \in S \Rightarrow \partial^{\alpha} \varphi \in L_p$, for all $\alpha \in \mathbb{Z}_+^n$, 0 .

Proof For 0 , let <math>N > (n+1)/p.

$$\int_{\mathbb{R}^{n}} \left| \partial^{\alpha} \varphi(x) \right|^{p} dx = \int_{\mathbb{R}^{n}} \left| \left(1 + |x| \right)^{(n+1)/p} \partial^{\alpha} \varphi(x) \right|^{p} \left(1 + |x| \right)^{-(n+1)} dx$$

$$\leq \sup_{x \in \mathbb{R}^{n}} \left| \left(1 + |x| \right)^{N} \partial^{\alpha} \varphi(x) \right|^{p} \int_{\mathbb{R}^{n}} \left(1 + |x| \right)^{-(n+1)} dx$$

$$\leq C(\alpha, N)^{p} C(n)$$

Tempered Distributions

Definition The dual space the space of continuous linear functionals. The dual space of $C_0^{\infty}(\mathbb{R}^n)$ denoted by $\left(C_0^{\infty}(\mathbb{R}^n)\right)' := D'(\mathbb{R}^n)$, is the space of **distributions**. The dual space $S'(\mathbb{R}^n)$ is the space of **tempered distributions**. We will denote the action $f \in S'$ on $\varphi \in S$, by $\langle f, \varphi \rangle$. This means that if $\varphi_k \xrightarrow[S]{} \varphi$, as $k \to \infty$, then $\langle f, \varphi_k \rangle \xrightarrow[k \to \infty]{} \langle f, \varphi \rangle$. We will assume the following stronger assumption: A linear functional f is in S' iff there exist C > 0, m, k such that

$$\left|\left\langle f,\varphi\right\rangle\right| \leq C \sum_{|\alpha|\leq m, |\beta|\leq k} C_{\varphi}\left(\alpha,\beta\right), \quad \forall \varphi \in S.$$

Observe that if this is satisfied for a linear functional f , then for any $\varphi_j \xrightarrow{\varsigma} \varphi$,

$$\begin{split} \left| \left\langle f, \varphi \right\rangle - \left\langle f, \varphi_{j} \right\rangle \right| &= \left| \left\langle f, \varphi - \varphi_{j} \right\rangle \right| \\ &\leq C \sum_{|\alpha| \leq m, |\beta| \leq k} C_{\varphi - \varphi_{j}} \left(\alpha, \beta \right) \underset{j \to \infty}{\longrightarrow} 0. \end{split}$$

Examples

- (i) We already discussed the Dirac $\langle \delta_{x_0}, \varphi \rangle := \varphi(x_0), x_0 \in \mathbb{R}^n$.
- (ii) If $f \in L_p(\mathbb{R}^n)$, $1 \le p \le \infty$, then since $S \subset L_{p'}(\mathbb{R}^n)$, $\frac{1}{p} + \frac{1}{p'} = 1$, we can define $\langle f, \varphi \rangle \coloneqq \int_{\mathbb{R}^n} f \varphi$ and by Hölder, for N > (n+1)/p'

$$\begin{aligned} \left| \left\langle f, \varphi \right\rangle \right| &\leq \left\| f \right\|_{p} \left\| \varphi \right\|_{p'} \\ &\leq C \left\| f \right\|_{p} C_{\varphi} \left(0, N \right). \end{aligned}$$

(iii) Algebraic polynomials – Let $P \in \Pi_{r-1}(\mathbb{R}^n)$, $P(x) = \sum_{|\alpha| < r} a_\alpha x^\alpha$, $a_\alpha \in \mathbb{C}$. Then one can define $\langle P, \varphi \rangle := \int_{\mathbb{R}^n} P\varphi$. Easy to see that $|\langle P, \varphi \rangle| \leq \sum_{|\alpha| < r} |a_\alpha| \int_{\mathbb{R}^n} |x^\alpha| |\varphi(x)| dx$ $\leq C(n,r) \max_{|\alpha|} |\alpha| \sum_{|\alpha| < r} C(0,|\alpha|+n+1) \int_{\mathbb{R}^n} |x^\alpha|^{|\alpha|} (1+|x|)^{-(|\alpha|+n+1)} dx$

$$\leq C(n,r) \max_{|\alpha| < r} |a_{\alpha}| \sum_{|\alpha| < r} C_{\varphi}(0,|\alpha| + n + 1) \int_{\mathbb{R}^{n}} |x|^{|\alpha|} (1 + |x|)^{-(|\alpha| + n + 1)} dx$$

$$\leq C(n,r) \max_{|\alpha| < r} |a_{\alpha}| C_{\varphi}(0,r + n)$$

(iv) Any function that satisfies $|f(x)| \le C(1+|x|)^M$, for some M > 0. Same proof as for polynomials (polynomial growth).

Definition Distributional (generalized) derivative of $f \in S'$. Let $\alpha \in \mathbb{Z}_+^n$. Then

$$\langle \partial^{\alpha} f, \varphi \rangle := (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle.$$

This definition is in line with integration by parts. If $\varphi, \psi \in S$, then

$$\int_{\mathbb{R}^n} \left(\partial^{\alpha} \varphi \right) \psi = \left(-1 \right)^{|\alpha|} \int_{\mathbb{R}^n} \varphi \left(\partial^{\alpha} \psi \right).$$

Remarks:

(i) Notice we are using $\left|\partial^{\beta}\varphi(x)\right|, \left|\partial^{\beta}\psi(x)\right|_{|x|\to\infty} 0, \ \forall \beta \in \mathbb{Z}_{+}^{n} \text{ and } \varphi, \psi \in S.$

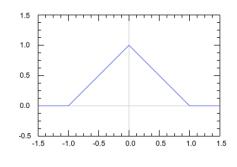
(ii) We will later require that the distributions and their distributional derivatives are functions.

Examples

(i)
$$\langle \partial^{\alpha} \delta_{x_0}, \varphi \rangle := (-1)^{|\alpha|} \langle \delta_{x_0}, \partial^{\alpha} \varphi \rangle = (-1)^{|\alpha|} \partial^{\alpha} \varphi(x_0)$$
.

(ii) **Assignment:** For
$$H(x) := \begin{cases} x+1, & -1 \le x < 0, \\ 1-x, & 0 \le x \le 1, \\ 0, & else. \end{cases}$$

prove that
$$H'(x) = g(x) = \begin{cases} 1, & -1 \le x < 0, \\ -1, & 0 \le x \le 1, \\ 0, & else. \end{cases}$$



Examples for other operations on distributions via duality:

(i) Composition with an invertible matrix. What is $f(M \cdot)$, for $f \in S'$? If f is a function, then $\int_{\mathbb{R}^n} f(Mx) \varphi(x) dx = \det_{v=Mx} \left| \det M^{-1} \right| \int_{\mathbb{R}^n} f(y) \varphi(M^{-1}y) dy.$

So we define $\langle f(M \cdot), \varphi \rangle := \langle f, \left| \det M^{\scriptscriptstyle -1} \right| \varphi (M^{\scriptscriptstyle -1} \cdot) \rangle$, $\forall \varphi \in S$.

(ii) What is a compactly supported distribution? Again, we define by duality. We say $\operatorname{supp}(f) = \Omega$, if $\langle f, \varphi \rangle = 0$, for any $\varphi \in S$, with $\operatorname{supp}(\varphi) \subseteq \Omega^c$.

Sobolev spaces

Definition We define the space of *test-functions* $C_0^r(\Omega)$ - continuously r-differentiable with compact support in Ω .

Definition Sobolev spaces $W_p^r(\Omega)$, $1 \le p \le \infty$

Def I For $1 \le p < \infty$, completion of $C_0^r(\Omega)$ with respect to the norm $\sum_{|\alpha| \le r} \left\| \partial^{\alpha} f \right\|_{L_p(\Omega)}$. For $p = \infty$, we take $W_{\infty}^r(\Omega) := C^r(\Omega)$.

Def II Let $f \in L_p(\Omega)$. Now for $\alpha \in \mathbb{Z}_+^n$, $|\alpha| \le r$, $g := \partial^{\alpha} f$ is the *distributional (generalized) derivative* of f if it is a function and for all $\phi \in C_0^r(\Omega)$

$$\int_{\Omega} g \phi = (-1)^{|\alpha|} \int_{\Omega} f \partial^{\alpha} \phi.$$

So, in this sense $H \in W_p^1(\mathbb{R})$, $1 \le p < \infty$.

Assignment: Use cubic Hermite interpolation to find a sequence of functions $\{f_k\} \subset C^1[-1,1]$, such that $f_k \to H$ in W_1^1 . Hint: Create Hermite cubic polynomials over [-1/k,1/k], $k \ge 1$.

The Sobolev norm and semi-norm. We require that the distributional derivatives exist as functions(!) in $L_p(\Omega)$ and

$$\left\|f\right\|_{W_p^r(\Omega)} \coloneqq \sum_{|\alpha| \le r} \left\|\partial^\alpha f\right\|_{L_p(\Omega)} < \infty \qquad \qquad \left|f\right|_{W_p^r(\Omega)} \coloneqq \sum_{|\alpha| = r} \left\|\partial^\alpha f\right\|_{L_p(\Omega)} \,.$$

Theorem $W_p^r(\Omega)$ is a Banach space

Proof We only need to prove completeness. Let $\{f_k\}$ be a Cauchy sequence in W_p^r . Then $\partial^\alpha f_k$ is a Cauchy sequence in L_p , $\forall \alpha, |\alpha| \leq r$. Since L_p is complete, there exist $f_\alpha \in L_p$ as the limits. We can view them as distributions. Let $\varphi \in S$, then

$$\left|\left\langle \partial^{\alpha} f_{k}, \varphi \right\rangle - \left\langle f_{\alpha}, \varphi \right\rangle\right| \leq \int_{\Omega} \left|\partial^{\alpha} f_{k} - f_{\alpha}\right| \left|\varphi\right| \leq \left\|\partial^{\alpha} f_{k} - f_{\alpha}\right\|_{p} \left\|\varphi\right\|_{p'}$$

Therefore $\partial^{\alpha} f_{k} \xrightarrow{s'} f_{\alpha}$. This means that

$$\langle f_{\alpha}, \varphi \rangle = \lim_{k \to \infty} \langle \partial^{\alpha} f_{k}, \varphi \rangle = \lim_{k \to \infty} (-1)^{|\alpha|} \langle f_{k}, \partial^{\alpha} \varphi \rangle = (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle.$$

Therefore f_{α} are the distributional derivatives of f and so f , the limit, is in W_p^r .

Theorem For a 'smooth' domain $\Omega \subseteq \mathbb{R}^n$, $1 \le p < \infty$ and $r \ge 1$, there exists a constant C > 0, such that for any 0 < j < r, $\varepsilon > 0$ and $f \in W_p^r(\Omega)$,

$$|f|_{j,p} \le C(\varepsilon |f|_{r,p} + \varepsilon^{-j/(r-j)} ||f||_p).$$

Remarks

(i) Sometimes one sees in text books a definition $||f||_{W_p^r(\Omega)} := ||f||_{L_p(\Omega)} + |f|_{W_p^r(\Omega)}$, since by the theorem with $\varepsilon = 1$

$$\left\|f\right\|_{L_p(\Omega)} + \left|f\right|_{W_p^r(\Omega)} \leq \sum_{|\alpha| \leq r} \left\|\partial^\alpha f\right\|_{L_p(\Omega)} \leq C\left(\left\|f\right\|_{L_p(\Omega)} + \left|f\right|_{W_p^r(\Omega)}\right).$$

(ii) The constant C depends on the 'smoothness' of the boundary $\partial\Omega$.

We will prove the theorem for $\Omega = \mathbb{R}^n$. First, we need two lemmas

Lemma If $g \in C^2[0, \delta]$ and $1 \le p < \infty$, then

$$\left|g'(0)\right| \leq \frac{C(p)}{\delta} \left(\delta^{p} \int_{0}^{\delta} \left|g''(u)\right|^{p} du + \delta^{-p} \int_{0}^{\delta} \left|g(u)\right|^{p} du\right)$$

Proof Let $g \in C^2[0,1]$ and $x \in [0,1/3], y \in [2/3,1]$. By the mean value theorem, there exists $z \in (x,y)$

$$|g'(z)| = \frac{|g(y) - g(x)|}{|y - x|} \le 3(|g(x)| + |g(y)|).$$

Therefore,

$$|g'(0)| = |g'(z) - \int_0^z g''(u) du| \le 3(|g(x)| + |g(y)|) + \int_0^1 |g''(u)| du.$$

Integration $\int_0^{1/3} \int_{2/3}^1 dx dy$ on both sides gives

$$\frac{1}{9}|g'(0)| \le \int_0^{1/3} |g(x)| dx + \int_{2/3}^1 |g(y)| dy + \frac{1}{9} \int_0^1 |g''(u)| du$$

So for p = 1 we have

$$|g'(0)| \le 9 \Big(\int_0^1 |g(u)| du + \int_0^1 |g''(u)| du \Big)$$

For 1 we get by Hölder

$$|g'(0)| \le 9 \left(\left(\int_0^1 |g(u)|^p du \right)^{1/p} + \left(\int_0^1 |g''(u)|^p du \right)^{1/p} \right),$$

Which gives

$$|g'(0)|^p \le c(p) \Big(\int_0^1 |g(u)|^p du + \int_0^1 |g''(u)|^p du\Big).$$

Now for $\delta > 0$ define $\tilde{g}(u) := g(\delta u)$, $0 \le u \le 1$. $\tilde{g}'(u) := \delta g'(\delta u) \Rightarrow g'(0) = \delta^{-1} \tilde{g}'(0)$

$$|g'(0)|^{p} = \delta^{-p} |\tilde{g}'(0)|^{p} = C\delta^{-p} \left(\int_{0}^{1} |\tilde{g}(u)|^{p} du + \int_{0}^{1} |\tilde{g}''(u)|^{p} du \right)$$

$$= C\delta^{-p} \left(\delta^{-1} \int_{0}^{\delta} |g(v)|^{p} dv + \delta^{2p-1} \int_{0}^{\delta} |g''(v)|^{p} dv \right)$$

$$= C\delta^{-1} \left(\delta^{-p} \int_{0}^{\delta} |g(v)|^{p} dv + \delta^{p} \int_{0}^{\delta} |g''(v)|^{p} dv \right)$$

Lemma For $1 \le p < \infty$, $\delta > 0$ and $f \in W_p^2(\mathbb{R}^n)$

$$|f|_{1,p} \le C \left(\delta |f|_{2,p} + \delta^{-1} ||f||_{p} \right)$$

Proof By density, sufficient to prove for $f \in C^2(\mathbb{R}^n) \cap W_p^2(\mathbb{R}^n)$. For any $x \in \mathbb{R}^n$ and $1 \le j \le n$, denoting $\vec{u}_j := (0, ..., 0, u_j, 0, ..., 0)$, and applying previous lemma

$$\left| \frac{\partial f}{\partial x_j} (x) \right|^p \le C \delta^{-1} \left(\delta^{-p} \int_0^{\delta} \left| f \left(x + \vec{u}_j \right) \right|^p du_j + \delta^p \int_0^{\delta} \left| \frac{\partial^2}{\partial^2 x_j} f \left(x + \vec{u}_j \right) \right|^p du_j \right)$$

$$\int_{\mathbb{R}^{n}} \left| \frac{\partial f}{\partial x_{j}}(x) \right|^{p} dx = \int_{x_{k} \neq x_{j}} \int_{-\infty}^{\infty} \left| \frac{\partial f}{\partial x_{j}}(x) \right|^{p} dx_{j}$$

$$\leq C \delta^{-1} \int_{x_{k} \neq x_{j}} \left(\delta^{-p} \int_{0}^{\delta} \int_{-\infty}^{\infty} \left| f(x + \vec{u}_{j}) \right|^{p} dx_{j} du_{j} + \delta^{p} \int_{0}^{\delta} \int_{-\infty}^{\infty} \left| \frac{\partial^{2}}{\partial^{2} x_{j}} f(x + \vec{u}_{j}) \right|^{p} dx_{j} du_{j} \right)$$

$$\leq C \int_{x_{k} \neq x_{j}} \left(\delta^{-p} \int_{-\infty}^{\infty} \left| f(x) \right|^{p} dx_{j} + \delta^{p} \int_{-\infty}^{\infty} \left| \frac{\partial^{2}}{\partial^{2} x_{j}} f(x) \right|^{p} dx_{j} \right)$$

$$\leq C \left(\delta^{-p} \left\| f \right\|_{p}^{p} + \delta^{p} \left\| \frac{\partial^{2}}{\partial^{2} x_{j}} f \right\|_{p}^{p} \right).$$

This gives

$$\left\|\frac{\partial f}{\partial x_j}\right\|_p \leq C \left(\delta^{-1} \left\|f\right\|_p + \delta \left\|\frac{\partial^2}{\partial^2 x_j} f\right\|_p\right) \leq C \left(\delta^{-1} \left\|f\right\|_p + \delta \left|f\right|_{2,p}\right), \quad 1 \leq j \leq n.$$

$$|f|_{1,p} \le C(\delta^{-1}||f||_p + \delta|f|_{2,p}).$$

Proof of theorem For 0 < j < r, and any $\varepsilon > 0$, choose $\delta = \varepsilon^{1/(r-j)}$. The proof is by double induction on r, j. First, we prove for j = r - 1. Assume that for some $2 \le k \le r - 1$

$$|f|_{k-1,p} \le C(\eta |f|_{k,p} + \eta^{-(k-1)} ||f||_p).$$

Then, by the previous lemma

$$|f|_{k,p} \le C \left(\delta |f|_{k+1,p} + \delta^{-1} |f|_{k-1,p} \right)$$

$$\le C \left(\delta |f|_{k+1,p} + \delta^{-1} \eta |f|_{k,p} + \delta^{-1} \eta^{1-k} ||f||_{p} \right)$$

Choose η such that $C\delta^{-1}\eta = 1/2$. Then

$$|f|_{k,p} \leq C(\delta |f|_{k+1,p} + \delta^{-k} ||f||_p).$$

We now prove downward induction on j. We assume $\left\|f\right\|_{j,p} \le C\left(\delta^{r-j}\left\|f\right\|_{r,p} + \delta^{-j}\left\|f\right\|_{p}\right)$, for $2 \le j < r$.

$$\begin{split} \left| f \right|_{j-1,p} & \leq C \Big(\delta \left| f \right|_{j,p} + \delta^{-(j-1)} \left\| f \right\|_{p} \Big) \\ & \leq C \Big(\delta \left(\delta^{r-j} \left| f \right|_{r,p} + \delta^{-j} \left\| f \right\|_{p} \right) + \delta^{-(j-1)} \left\| f \right\|_{p} \Big) \\ & \leq C \Big(\delta^{r-(j-1)} \left| f \right|_{r,p} + \delta^{-(j-1)} \left\| f \right\|_{p} \Big). \end{split}$$

Setting $\delta = \varepsilon^{1/(r-j)}$ gives

$$\left|f\right|_{j,p} \leq C\left(\delta^{r-j}\left|f\right|_{r,p} + \delta^{-j}\left\|f\right\|_{p}\right) = C\left(\varepsilon\left|f\right|_{r,p} + \varepsilon^{-j/(r-j)}\left\|f\right\|_{p}\right)$$

Application of Sobolev space: Approximation with the Fourier Series

We now focus on the domain $\mathbb{T}^n = [-\pi, \pi]^n$ and 2π - periodic functions. They are extended to all of \mathbb{R}^n by $f(x+2\pi k) = f(x), k \in \mathbb{Z}^n, x \in \mathbb{T}^n$.

Periodic...what does it mean for us? For example, the function f(x) = x is <u>not</u> continuous as a periodic function.

 $L_2(\mathbb{T}^n)$ is a Hilbert space equipped with the dot-product

$$\langle f,g\rangle = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) \overline{g(x)} dx.$$

The exponents are an orthonormal basis

$$f(x) = \sum_{L_2} \hat{f}(k) e^{ikx}, \quad \hat{f}(k) = \left\langle f, e^{ik\cdot} \right\rangle = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) e^{-ikx} dx, \qquad kx := \left\langle k, x \right\rangle_{l_2(\mathbb{R}^n)} = \sum_{i=1}^n k_i x_i.$$

The partial Fourier series

$$S_N f(x) := \sum_{|k| \le N} \hat{f}(k) e^{ikx}$$
.

Convergence in L_2 means that for any $f \in L_2(\mathbb{T}^n)$,

$$\lim_{N\to\infty} \left\| f - S_N f \right\|_{L_2\left(\mathbb{T}^n\right)}^2 = \lim_{N\to\infty} \frac{1}{\left(2\pi\right)^n} \int_{\mathbb{T}^n} \left| f\left(x\right) - S_N f\left(x\right) \right|^2 dx = 0.$$

Parseval identity

$$\left\|f\right\|_{2}^{2} = \sum_{k} \left|\hat{f}(k)\right|^{2}.$$

Observe **convergence is not pointwise!** There exists a continuous periodic function $f: \mathbb{T} \to \mathbb{R}$ such that

$$\left|S_{N}f(0)\right| = \left|\sum_{k=-N}^{N} \hat{f}(k)\right| \underset{N\to\infty}{\longrightarrow} \infty.$$

There are even more exotic constructions! Conclusion: "Don't bring a knife to a gun fight" = Don't apply in L_{∞} an Hilbert space/ L_2 tool. [This is covered in the "Approximation Theory" course].

Now let's try to say something about rate of convergence. Here is a typical approximation theoretical result: a **Jackson-type estimate**.

Theorem There exists a constant C(r) > 0, such that for any $f \in W_2^r(\mathbb{T})$,

$$E_N(f)_2 := \|f - S_N f\|_{L_2(\mathbb{T})} \le C(r) N^{-r} |f|_{r,2}, \qquad |f|_{r,2} = \|f^{(r)}\|_{L_2(\mathbb{T})}.$$

Let's prove a slightly weaker Jackson-type estimate (simpler proof)

Theorem Let $f \in W_2^{r+1}(\mathbb{T})$ then

$$E_N(f)_2 \le C(r)N^{-(r+1/2)}|f|_{r+1,2}$$
.

Proof First, assume $f \in C^{r+1}(\mathbb{T})$.

1. Decay of the Fourier coefficients -

By Parseval we have

$$\left\|f - S_N f\right\|_{L_2(\mathbb{T})} = \left\|\sum_{|k| \ge N+1} \hat{f}\left(k\right) e^{ikw}\right\|_2 = \sqrt{\sum_{|k| \ge N+1} \left|\hat{f}\left(k\right)\right|^2}$$

We show $\left|\hat{f}(k)\right| \le \left|k\right|^{-(r+1)} \left\|f^{(r+1)}\right\|_2$, $k \ne 0$. Integration by parts yields,

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \left(\frac{f(x) e^{-ikx}}{-ik} \Big|_{-\pi}^{\pi} + \frac{1}{ik} \int_{-\pi}^{\pi} f'(x) e^{-ikx} dx \right)$$

$$= \frac{1}{ik} (f')^{\hat{}}(k).$$

By repeated application of the above

$$\left| \hat{f}(k) \right| \le \left| k \right|^{-(r+1)} \left| \left(f^{(r+1)} \right)^{\hat{}}(k) \right| \le \left| k \right|^{-(r+1)} \left\| f^{(r+1)} \right\|_{2}$$

Note:
$$f \in C^r(\mathbb{T}) \Rightarrow |k|^r |\hat{f}(k)| = |(f^{(r)})^{\hat{}}(k)| \Rightarrow \sum_k |k|^{2r} |\hat{f}(k)|^2 = ||f^{(r)}||_2^2 \Rightarrow \sum_k |k|^{2r} |\hat{f}(k)|^2 < \infty$$
.

We shall later see that the Sobolev space W_2^r can be characterized by this 'Fourier' domain property.

2. The estimate of the tail

$$\begin{split} \left\| f - S_N f \right\|_2^2 &= \sum_{|k| \ge N+1} \left| \hat{f} \left(k \right) \right|^2 \le 2 \left\| f^{(r+1)} \right\|_2^2 \sum_{k=N+1}^{\infty} \frac{1}{k^{2(r+1)}} \\ &\sum_{k=N+1}^{\infty} \frac{1}{k^{\alpha}} \le \int_N^{\infty} \frac{dx}{x^{\alpha}} = \frac{1}{\alpha - 1} N^{-(\alpha - 1)} \Longrightarrow \sum_{k=N+1}^{\infty} \frac{1}{k^{2(r+1)}} \le \frac{1}{2r + 1} N^{-(2r+1)} \\ &\left\| f - S_N f \right\|_2 \le \sqrt{\frac{2}{2r + 1}} N^{-(r+1/2)} \left\| f^{(r+1)} \right\|_2. \end{split}$$

3. <u>Density</u> - If $f \in W_2^{r+1}(\mathbb{T})$, we apply the density of $C^{r+1}(\mathbb{T})$ in $W_2^{r+1}(\mathbb{T})$ (assignment).

The origins of the Fourier Series (... which reveal how to generalize it)

The Heat equation over \mathbb{T} , $t \ge 0$, u(x,t), $-\pi \le x \le \pi$

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, \\ u(x,0) = f(x). \end{cases}$$

Laplace operator $Lf := -\Delta f = -f''$.

 $-(e^{ikx})'' = k^2 e^{ikx} \implies \{e^{ikx}\}$ eigenfunctions of L, k^2 eigenvalues of L.

$$Lf(x) = -\Delta f(x) = \sum_{k} k^{2} \hat{f}(k) e^{ikx}, \quad \forall f \in C^{2}(\mathbb{T}).$$

For $\varphi: \mathbb{R} \to \mathbb{R}$, even, define $\varphi(L) f(x) := \sum_{k} \varphi(k^2) \hat{f}(k) e^{ikx}$.

Spectral representation to solution of the heat equation with boundary condition f, is through **semi-group** $\varphi_t(u) := e^{-tu}$, t > 0. The solution is

$$u(x,t) = \varphi_t(L) f(x) = \sum_k e^{-tk^2} \hat{f}(k) e^{ikx}.$$

Example Let $\varphi(u) = 1_{[-1,1]}(u)$. Then,

$$\varphi\left(N^{-1}\sqrt{L}\right)f\left(x\right) = \sum_{k} \varphi\left(\frac{|k|}{N}\right)\hat{f}\left(k\right)e^{ikx} = \sum_{k=-N}^{N} \hat{f}\left(k\right)e^{ikx} = S_{N}f\left(x\right).$$

Fourier Transform

A <u>rigorous</u> approach is to first define the Fourier transform only for Schwartz functions. **Def** $\varphi \in S(\mathbb{R}^n)$, then

$$\hat{\varphi}(w) := \int_{\mathbb{R}^n} \varphi(x) e^{-iw \cdot x} dx = \int_{\mathbb{R}^n} \varphi(x) e^{-i\langle w, x \rangle} dx, \qquad w \in \mathbb{R}^n.$$

Properties of the Fourier integral:

i. If we expand the definition to $f \in L_1(\mathbb{R}^n)$, $\|\hat{f}\|_{\infty} \leq \|f\|_1$.

ii. For $f \in L_1(\mathbb{R})$, \hat{f} is uniformly continuous.

Proof For $\varepsilon > 0$, let M > 0 such that $\int_{\mathbb{R}^n \setminus [-M,M]^n} |f| \le \varepsilon$. Then, for any $\delta \in \mathbb{R}^n$

$$\begin{aligned} \left| \hat{f}(w+\delta) - \hat{f}(w) \right| &= \left| \int_{\mathbb{R}^n} e^{-iwx} \left(e^{-i\delta x} - 1 \right) f(x) dx \right| \\ &\leq \int_{\mathbb{R}^n} \left| e^{-i\delta x} - 1 \right| \left| f(x) \right| dx \\ &= \int_{\left[-M,M \right]^n} \left| e^{-i\delta x} - 1 \right| \left| f(x) \right| dx + \int_{\mathbb{R}^n \setminus \left[-M,M \right]^n} \left| e^{-i\delta x} - 1 \right| \left| f(x) \right| dx \\ &\leq \sup_{x \in \left[-M,M \right]^n} \left| e^{-i\delta x} - 1 \right| \left\| f \right\|_1 + 2\varepsilon \underset{\left| \delta \right| \to 0}{\longrightarrow} 2\varepsilon. \end{aligned}$$

iii.
$$(f(\cdot-z))^{\hat{}}(w) = \int_{\mathbb{R}^n} f(x-z)e^{-iwx}dx = \int_{\mathbb{R}^n} f(y)e^{-iw(y+z)}dy = e^{-iwz}\hat{f}(w), \qquad z \in \mathbb{R}^n.$$

iv. For
$$\varphi \in S(\mathbb{R})$$
, $(\varphi^{(r)})^{\hat{}}(w) = (iw)^r \hat{\varphi}(w)$

$$(\varphi')^{\hat{}}(w) = \int_{-\infty}^{\infty} \varphi'(x) e^{-iwx} dx$$

$$= \underbrace{\varphi(x) e^{-iwx}}_{=0} \Big|_{-\infty}^{\infty} + iw \int_{-\infty}^{\infty} \varphi(x) e^{-iwx} dx$$

$$= iw \int_{-\infty}^{\infty} \varphi(x) e^{-iwx} dx = iw \hat{\varphi}(w)$$

Examples:

i.
$$f(x) = 1_{[0,1]}(x)$$
. Then, $\hat{f}(w) = \int_{0}^{1} e^{-iwx} dx = \frac{e^{-iwx}}{-iw} \Big|_{0}^{1} = \frac{e^{-iw} - 1}{-iw} = \frac{1 - e^{-iw}}{iw}$.

ii.
$$f(x) = \operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$
, $\hat{f}(w) = 1_{[-\pi,\pi]}(w)$. Careful! $\operatorname{sinc} \in L_2 \setminus L_1$.

iii. Gaussians
$$g_{\alpha}(x) = e^{-\alpha x^2}$$
, $\hat{g}_{\alpha}(w) = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{w^2}{4\alpha}}$, $\alpha > 0$. This also implies a special case of the inverse Fourier

$$g_{\alpha}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{g}_{\alpha}(w) e^{iwx} dw, \ \forall x \in \mathbb{R}.$$

Convolution on \mathbb{R}^n

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y) g(y) dy.$$

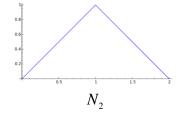
Theorem For $f, g \in L_1(\mathbb{R}^n)$, $(f * g)^{\hat{}}(w) = \hat{f}(w)\hat{g}(w)$, $w \in \mathbb{R}^n$.

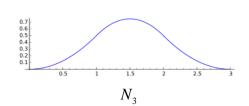
Proof

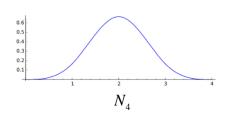
$$(f * g)^{\hat{}}(w) = \int_{\mathbb{R}^n} f * g(x)e^{-iwx}dx = \int_{\mathbb{R}^n} e^{-iwx}dx \int_{\mathbb{R}^n} f(x-y)g(y)dy$$
$$= \int_{\mathbb{R}^n} g(y) \Big(\int_{\mathbb{R}^n} f(x-y)e^{-iwx}dx \Big) dy$$
$$= \int_{\mathbb{R}^n} g(y)e^{-iwy} \hat{f}(w) dy$$
$$= \hat{f}(w)\hat{g}(w).$$

Examples: B-splines
$$N_1(x) = 1_{[0,1]}(x)$$

$$N_{2}(x) = N_{1} * N_{1}(x) = \int_{0}^{1} 1_{[0,1]}(x-t) dt = \int_{0 \le x-t \le 1}^{\min(x,1)} \int_{\max(x-1,0)}^{\min(x,1)} dt = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 2-x & 1 \le x \le 2 \\ 0 & x > 2 \end{cases}$$







We define
$$N_r := N_{r-1} * N_1 = \underbrace{N_1 * \cdots * N_1}_r$$
. Therefore, $(N_r)^{\hat{}}(w) = \left(\frac{1 - e^{-iw}}{iw}\right)^r$.

Theorem If
$$\varphi \in S$$
, $\int \varphi = 1$, and $f \in L_p\left(\mathbb{R}^n\right)$, $1 \le p \le \infty$, then, for $\varphi_t := t^{-n}\varphi\left(t^{-1}\cdot\right)$ $\left\|f - \varphi_t * f\right\|_p \xrightarrow[t \to 0]{} 0$.

Corollary S is dense in L_p , $1 \le p < \infty$.

Proof Use smooth 'windows' $\psi_R \in S$, $0 \le \psi_R \le 1$, $\operatorname{supp}(\psi_R) = B(0,R)$, $\psi_R \equiv 1$ on B(0,R-1), R > 1. For any $\varepsilon > 0$, select t > 0, such that $\|f - \varphi_t * f\|_p^p < \varepsilon / 3$, and then R > 0, such that $\|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1))}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1)}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1))}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1)}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1)}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1)}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B(0,R-1)}^p + \|f\|_{L_p(\mathbb{R}^n \setminus B($

$$\begin{split} \left\| f - \phi \right\|_{p}^{p} &= \int_{B(0,R-1)} \left| f - f * \varphi_{t} \right|^{p} + \int_{\mathbb{R}^{n} \backslash B(0,R-1)} \left| f - \psi \left(f * \varphi_{t} \right) \right|^{p} \\ &\leq \int_{\mathbb{R}^{n}} \left| f - f * \varphi_{t} \right|^{p} + c \int_{\mathbb{R}^{n} \backslash B(0,R-1)} \left| f \right|^{p} + c \int_{\mathbb{R}^{n} \backslash B(0,R-1)} \left| f * \varphi_{t} \right|^{p} \\ &< \varepsilon \end{split}$$

Theorem For $\varphi, \psi \in S(\mathbb{R}^n)$

$$\langle \varphi, \psi \rangle_{L_2(\mathbb{R}^n)} = (2\pi)^{-n} \langle \hat{\varphi}, \hat{\psi} \rangle_{L_2(\mathbb{R}^n)}.$$

Proof (n=1). Let $g_{\alpha}(x) = \frac{1}{2\sqrt{\pi\alpha}}e^{-\frac{x^2}{4\alpha}}$. We already saw that $\hat{g}_{\alpha}(w) = e^{-\alpha w^2}$. We apply the special case of the inverse Fourier for Gaussians

$$\int \hat{g}_{\alpha}(w)\hat{\varphi}(w)\overline{\hat{\psi}(w)}dw = \int \hat{g}_{\alpha}(w)\int \varphi(x)e^{-iwx}dx \int \overline{\psi(y)}e^{iwy}dydw
= \int \varphi(x)\int \overline{\psi(y)}\left(\int \hat{g}_{\alpha}(w)e^{iw(y-x)}dw\right)dydx
= 2\pi \int \varphi(x)\left(\int \overline{\psi(y)}g_{\alpha}(y-x)dy\right)dx
= 2\pi \int \varphi(x)\left(\int \overline{\psi(y)}g_{\alpha}(x-y)dy\right)dx$$

When we take limit $\alpha \rightarrow 0^+$

$$\int \hat{g}_{\alpha}(w)\hat{\varphi}(w)\overline{\hat{\psi}(w)}dw = 2\pi \int \varphi(x)\left(\int \overline{\psi(y)}g_{\alpha}(x-y)dy\right)dx$$

$$\downarrow \qquad \qquad \downarrow$$

$$\int \hat{\varphi}(w)\overline{\hat{\psi}(w)}dw = 2\pi \int \varphi(x)\overline{\psi(x)}dx$$

Theorem [Inverse Fourier] For $\varphi \in S$

$$\varphi(x) = (\hat{\varphi})^{\vee}(x) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{\varphi}(w) e^{iwx} dw, \quad \forall x \in \mathbb{R}^n.$$

Proof We use again the Gaussians. For $\alpha > 0$, by the previous theorem, for any $x \in \mathbb{R}^n$

$$\langle \varphi, g_{\alpha}(x-\cdot) \rangle = (2\pi)^{-n} \langle \hat{\varphi}, (g_{\alpha}(x-\cdot))^{\hat{}} \rangle \Rightarrow$$

$$\int_{\mathbb{R}^{n}} \varphi(y) g_{\alpha}(x-y) dy = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \hat{\varphi}(w) e^{iwx} \hat{g}_{\alpha}(w) dw \underset{\alpha \to 0}{\Longrightarrow}$$

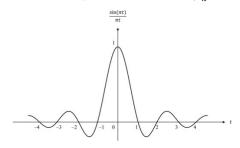
$$\varphi(x) = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \hat{\varphi}(w) e^{iwx} dw$$

Theorem The Fourier transform is a homomorphism on the Schwartz class.

Definition Closure of $S \cap L_2$ in L_2 is L_2 . So, we may extend the Fourier and inverse Fourier transform to L_2 . Moreover, $\forall f, g \in L_2(\mathbb{R}^n) \langle f, g \rangle = (2\pi)^{-n} \langle \hat{f}, \hat{g} \rangle$.

Example The sinc function. $\hat{f}(w) = 1_{[-\pi,\pi]}(w) \dots$ what is f?

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(w) e^{iwx} dw = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{iwx} dw = \frac{1}{2\pi} \frac{e^{iwx}}{ix} \bigg|_{-\pi}^{\pi} = \frac{1}{2\pi} \frac{e^{i\pi x} - e^{-i\pi x}}{ix} = \frac{\sin \pi x}{\pi x}.$$



Fourier transform of distributions

Observe that for $\varphi, \psi \in S$

$$\int_{\mathbb{R}^{n}} \varphi(x) \hat{\psi}(x) = \int_{\mathbb{R}^{n}} \varphi(x) \left(\int_{\mathbb{R}^{n}} \psi(y) e^{-ixy} dy \right) dx$$
$$= \int_{\mathbb{R}^{n}} \psi(y) \left(\int_{\mathbb{R}^{n}} \varphi(x) e^{-ixy} dx \right) dy$$
$$= \int_{\mathbb{R}^{n}} \hat{\varphi}(y) \psi(y) dy$$

Again, we extend by duality

Def The Fourier transform of a distribution $f \in S'$ is defined by

$$\langle \hat{f}, \varphi \rangle := \langle f, \hat{\varphi} \rangle, \quad \forall \varphi \in S.$$

Example $f = \delta_0$

$$\langle \hat{\delta}_0, \varphi \rangle = \langle \delta_0, \hat{\varphi} \rangle = \hat{\varphi}(0) = \int_{\mathbb{R}^n} \varphi(x) dx \Rightarrow (\delta_0)^{\hat{}} \equiv 1.$$

We can also show that $(\partial^{\alpha} \delta_0)^{\hat{}}(w) = (iw)^{\alpha}$, $\alpha \in \mathbb{Z}_+^n$. Indeed,

$$\begin{split} \left\langle \partial^{\alpha} \delta_{0}, \hat{\varphi} \right\rangle &\coloneqq \left(-1 \right)^{|\alpha|} \left\langle \delta_{0}, \partial^{\alpha} \hat{\varphi} \right\rangle \\ &= \left(-1 \right)^{|\alpha|} \partial^{\alpha} \hat{\varphi} \left(0 \right) \\ &= \left(-1 \right)^{|\alpha|} \partial^{\alpha}_{w} \left(\int_{\mathbb{R}^{n}} \varphi(x) e^{-iwx} dx \right) \Big|_{w=0} \\ &= \int_{\mathbb{R}^{n}} \left(ix \right)^{\alpha} \varphi(x) e^{-iwx} dx \Big|_{w=0} \\ &= \int_{\mathbb{R}^{n}} \left(ix \right)^{\alpha} \varphi(x) dx. \end{split}$$

Few properties

(i) $f, g \in S'$, then $(f+g)^{\hat{}} = \hat{f} + \hat{g}$. For any $\varphi \in S$

$$\langle (f+g)^{\hat{}}, \varphi \rangle = \langle f+g, \hat{\varphi} \rangle = \langle f, \hat{\varphi} \rangle + \langle g, \hat{\varphi} \rangle = \langle \hat{f}, \varphi \rangle + \langle \hat{g}, \varphi \rangle.$$

(ii) If $\varphi \in S$, $f \in S'$, then $(f * \varphi)^{\hat{}} = \hat{f} \hat{\varphi}$.

<u>Definition of convolution</u>: Observe that for functions $\phi, \varphi, \psi \in S$

$$\int_{\mathbb{R}^{n}} (\phi * \varphi) \psi = \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \phi(y) \varphi(x - y) dy \right) \psi(x) dx$$

$$= \int_{\mathbb{R}^{n}} \phi(y) \left(\int_{\mathbb{R}^{n}} \varphi(x - y) \psi(x) dx \right) dy$$

$$= \int_{\mathbb{R}^{n}} \phi(y) \left(\int_{\mathbb{R}^{n}} \varphi(-(y - x)) \psi(x) dx \right) dy$$

$$= \int_{\mathbb{R}^{n}} \phi(y) (\varphi(-\cdot) * \psi)(y) dy$$

So, we define for $f \in S'$, $f * \varphi$ by

$$\langle f * \varphi, \psi \rangle := \langle f, \varphi(-\cdot) * \psi \rangle, \quad \psi \in S.$$

Alternatively

$$f * \varphi(x) := \langle f, \varphi(x - \cdot) \rangle, \qquad x \in \mathbb{R}^n.$$

Definition of multiplication: We define $f \varphi$ by

$$\langle f\varphi,\psi\rangle:=\langle f,\varphi\psi\rangle, \quad \psi\in S.$$

Now,

$$\langle (f * \varphi)^{\hat{}}, \psi \rangle = \langle f * \varphi, \hat{\psi} \rangle = \langle f, \varphi(-\cdot) \hat{\psi} \rangle$$

$$= \langle \hat{f}, (\varphi(-\cdot) \hat{\psi})^{\vee} \rangle$$

$$= \langle \hat{f}, \hat{\varphi} \psi \rangle$$

$$= \langle \hat{f} \hat{\varphi}, \psi \rangle$$

Function space characterization in the Fourier domain

$$\begin{aligned} &\textbf{Simple example: Parseval} \quad f \in L_2\left(\mathbb{T}^n\right) \Leftrightarrow \sqrt{\sum_{k \in \mathbb{Z}^n} \left|\hat{f}\left(k\right)\right|^2} < \infty \text{ , } \left\|f\right\|_{L_2\left(\mathbb{T}^n\right)} = \left\|\left\{\hat{f}\left(k\right)\right\}\right\|_{L_2\left(\mathbb{Z}^n\right)} \\ &f \in L_2\left(\mathbb{R}^n\right) \Leftrightarrow \hat{f} \in L_2\left(\mathbb{R}^n\right), \ \left\|f\right\|_2 = \left(2\pi\right)^{-n} \left\|\hat{f}\right\|_2. \end{aligned}$$

Let's focus on the case of \mathbb{R}^n . We subdivide the frequencies to 'dyadic rings' $\Omega_j := \{w \in \mathbb{R}^n : 2^j < |w| \le 2^{j+1}\}$, $j \in \mathbb{Z}$. For $f \in L_2$, let f_j , be defined as the dyadic 'frequency slice' by $f_j = (\hat{f} \mathbf{1}_{\Omega_j})^{\vee}$. We have that $f = \sum_j f_j$ and $\{f_j\}$ are orthogonal to each other because $\langle f_j, f_k \rangle = (2\pi)^{-n} \langle \hat{f}_j, \hat{f}_k \rangle = (2\pi)^{-n} \delta_{j,k}$. Therefore

$$\left\|f\right\|_{2}^{2} = \left\langle \sum_{j} f_{j}, \sum_{k} f_{k} \right\rangle = \sum_{j} \left\langle f_{j}, f_{j} \right\rangle = \int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}} \left|f_{j}\right|^{2} \Rightarrow \left\|f\right\|_{2} = \left\|\left(\sum_{j \in \mathbb{Z}} \left|f_{j}\right|^{2}\right)^{1/2}\right\|_{2}.$$

What about $p \neq 2$? Much more complicated, but we can mimic the above. Let $\varphi \in S$, such that $\operatorname{supp}(\hat{\varphi}) = B(0,2)$, $0 \leq \hat{\varphi} \leq 1$, $\hat{\varphi} \equiv 1$ on B(0,1). Define $\psi \in S$, by $\hat{\psi}(w) := \hat{\varphi}(w) - \hat{\varphi}(2w)$ and $\hat{\psi}_j(w) := \hat{\psi}\left(2^{-j}w\right)$, $j \in \mathbb{Z}$. $\operatorname{supp}(\hat{\psi}_j) = \left\{w \in \mathbb{R}^n : 2^{j-1} \leq |w| \leq 2^{j+1}\right\}$ **Lemma** $\sum \hat{\psi}_j \equiv 1$.

Proof Let $w \in \mathbb{R}^n$. Select $J \in \mathbb{Z}$, such that $2^J < |w| \le 2^{J+1}$. This implies that $2^{-J-1} |w| \le 1$, $2^{-J+1} |w| \ge 2$.

$$\sum_{j=-\infty}^{J-1} \hat{\psi}(2^{-j}w) = \sum_{j=-\infty}^{J-1} \hat{\varphi}(2^{-j}w) - \hat{\varphi}(2^{-(j-1)}w)$$

$$= \hat{\varphi}(2^{-J+1}w) - \hat{\varphi}(2^{-J+2}w) + \hat{\varphi}(2^{-J+2}w) - \hat{\varphi}(2^{-J+3}w) + \cdots$$

$$= 0 - 0 + 0 - 0 + \cdots$$

$$= 0.$$

$$\sum_{j=J}^{\infty} \hat{\psi} \left(2^{-j} w \right) = \sum_{j=J}^{\infty} \hat{\varphi} \left(2^{-j} w \right) - \hat{\varphi} \left(2^{-(j-1)} w \right)$$

$$= \hat{\varphi} \left(2^{-J} w \right) - \hat{\varphi} \left(2^{-J+1} w \right) + \hat{\varphi} \left(2^{-J-1} w \right) - \hat{\varphi} \left(2^{-J} w \right) + \cdots$$

$$= \frac{\hat{\varphi} \left(2^{-J-1} w \right) + \cdots}{= 1}$$

$$= \hat{\varphi} \left(2^{-J-1} w \right) + \hat{\varphi} \left(2^{-J-2} w \right) - \hat{\varphi} \left(2^{-J-1} w \right) + \cdots$$

$$= \frac{\hat{\varphi} \left(2^{-J-2} w \right) + \cdots}{= 1}$$

$$= 1$$

Next, we define the operator $\Delta_j f \coloneqq f * \psi_j$. Observe that since $\psi_j \in S \left\{ \Delta_j \right\}$ are well defined on S', so in particular on $L_p \left(\mathbb{R}^n \right)$, $0 . In the Fourier domain these operators serve as frequency 'cut-off' operators, similar to the simpler 'cut-off' indicators in <math>L_2$: $\left(\Delta_j f \right)^{\hat{}} = \hat{f} \hat{\psi}_j$.

Theorem [Littlewood-Paley type] $f \in L_p(\mathbb{R}^n)$, $1 iff <math>\left(\sum_j \left|\Delta_j f\right|^2\right)^{1/2} \in L_p(\mathbb{R}^n)$.

$$\left\| \left(\sum_{j} \left| \Delta_{j} f \right|^{2} \right)^{1/2} \right\|_{p} = \left(\int_{\mathbb{R}^{n}} \left(\sum_{j} \left| \Delta_{j} f \left(x \right) \right|^{2} \right)^{p/2} dx \right)^{1/p}.$$

Theorem $f \in L_2(\mathbb{R}^n)$ is in $W_2^r(\mathbb{R}^n)$ iff

$$\left(\int_{\mathbb{R}^n} \left| \hat{f}(w) \right|^2 \left(1 + |w| \right)^{2r} dw \right)^{1/2} < \infty,$$

and

$$||f||_{r,2} \sim \left(\int_{\mathbb{R}^n} |\hat{f}(w)|^2 (1+|w|)^{2r} dw\right)^{1/2}$$

Remark This allows to defined **Fractional Sobolev spaces** for $s \in \mathbb{R}$, and $1 by checking for <math>f \in S'$ if

$$\left(\left(1+\left|\cdot\right|^2\right)^{s/2}\hat{f}\right)^{\vee}\in L_p.$$

Proof [One direction for now] First, let $f \in S$. We claim that for $1 \le k \le r$

$$\int_{\mathbb{R}^{n}} \left| \hat{f}(w) \right|^{2} \left| w \right|^{2k} dw \sim \left| f \right|_{k,2}^{2} = \left(\sum_{|\alpha|=k} \left\| \hat{o}^{\alpha} f \right\|_{2} \right)^{2}$$

Let's start with n = 1. In this case

$$\left(f^{(k)}\right)^{\hat{}}\left(w\right) = \left(iw\right)^{k} \hat{f}\left(w\right) \Rightarrow \left|\left(f^{(k)}\right)^{\hat{}}\left(w\right)\right| = \left|w\right|^{k} \left|\hat{f}\left(w\right)\right|.$$

So, by Parseval

$$|f|_{k,2}^2 = ||f^{(k)}||_2^2 = \frac{1}{2\pi} \int_{\mathbb{R}} |(f^{(k)})^{\hat{}}(w)|^2 dw = \frac{1}{2\pi} \int_{\mathbb{R}} |\hat{f}(w)|^2 |w|^{2k} dw.$$

For $n \ge 2$

$$|w|^{2k} = \left(\sum_{m=1}^{n} w_m^2\right)^k = \left(w_1^k\right)^2 + n\left(w_1^{k-1}w_2\right)^2 + \dots + \left(w_n^k\right)^2 = \sum_{|\alpha|=k} a_{\alpha} \left(w^{\alpha}\right)^2.$$

Repeated application, coordinate by coordinate, each step similar to the univariate case, gives

$$\left(\partial^{\alpha} f\right)^{\hat{}}\left(w\right) = \left(iw\right)^{\alpha} \hat{f}\left(w\right) \Longrightarrow \left|\left(\partial^{\alpha} f\right)^{\hat{}}\left(w\right)\right| = \left|w^{\alpha}\right| \left|\hat{f}\left(w\right)\right|.$$

Example

$$\left(\frac{\partial}{\partial x_{1}}\frac{\partial}{\partial x_{2}}f\right)^{\wedge}(w) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial}{\partial x_{1}}\frac{\partial}{\partial x_{2}}f(x)e^{-iw_{1}x_{1}}e^{-iw_{2}x_{2}}dx_{1}dx_{2}$$

$$= \int_{-\infty}^{\infty} e^{-iw_{2}x_{2}} \left(\int_{-\infty}^{\infty} \frac{\partial}{\partial x_{1}}\left(\frac{\partial}{\partial x_{2}}f(x)\right)e^{-iw_{1}x_{1}}dx_{1}\right)dx_{2}$$

$$= iw_{1} \int_{-\infty}^{\infty} e^{-iw_{2}x_{2}} \left(\int_{-\infty}^{\infty} \frac{\partial}{\partial x_{2}}f(x)e^{-iw_{1}x_{1}}dx_{1}\right)dx_{2}$$

$$= iw_{1} \int_{-\infty}^{\infty} e^{-iw_{1}x_{1}} \left(\int_{-\infty}^{\infty} \frac{\partial}{\partial x_{2}}f(x)e^{-iw_{2}x_{2}}dx_{2}\right)dx_{1}$$

$$= -w_{1}w_{2} \int_{-\infty}^{\infty} e^{-iw_{1}x_{1}} \left(\int_{-\infty}^{\infty} f(x)e^{-iw_{2}x_{2}}dx_{2}\right)dx_{1}$$

$$= -w_{1}w_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)e^{-iw_{1}x_{1}}e^{-iw_{2}x_{2}}dx_{1}dx_{2}$$

$$= -w_{1}w_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)e^{-iw_{1}x_{1}}e^{-iw_{2}x_{2}}dx_{1}dx_{2}$$

$$= -w_{1}w_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)e^{-iw_{1}x_{1}}e^{-iw_{2}x_{2}}dx_{1}dx_{2}$$

$$= -w_{1}w_{2} \int_{-\infty}^{\infty} (w).$$

This gives

$$\left\|\partial^{\alpha} f\right\|_{2}^{2} = \frac{1}{\left(2\pi\right)^{n}} \int_{\mathbb{R}^{n}} \left|\left(\partial^{\alpha} f\right)^{\hat{}}\left(w\right)\right|^{2} dw = \frac{1}{\left(2\pi\right)^{n}} \int_{\mathbb{R}^{n}} \left|\hat{f}\left(w\right)\right|^{2} \left|w^{\alpha}\right|^{2} dw.$$

Thus, we obtain

$$\frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \left| \hat{f}(w) \right|^{2} \left| w \right|^{2k} dw = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \left| \hat{f}(w) \right|^{2} \left(\sum_{|\alpha|=k} a_{\alpha} \left| w^{\alpha} \right|^{2} \right) dw$$

$$\sim \sum_{|\alpha|=k} \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \left| \hat{f}(w) \right|^{2} \left| w^{\alpha} \right|^{2} dw$$

$$\sim \sum_{|\alpha|=k} \left\| \partial^{\alpha} f \right\|_{2}^{2}$$

$$\sim \left| f \right|_{k,2}^{2}.$$

Therefore

$$\int_{\mathbb{R}^{n}} \left| \hat{f}(w) \right|^{2} (1 + |w|)^{2r} dw = \sum_{k=0}^{r} b_{k} \int_{\mathbb{R}^{n}} \left| \hat{f}(w) \right|^{2} |w|^{2k} dw$$

$$\sim \sum_{k=0}^{r} \sum_{|\alpha|=k} \left\| \partial^{\alpha} f \right\|_{2}^{2}$$

$$\sim \left(\sum_{|\alpha| \le r} \left\| \partial^{\alpha} f \right\|_{2} \right)^{2} = \left| f \right|_{r,2}^{2}.$$

To complete the proof for $f \in W_2^r(\mathbb{R}^n)$, we apply density again. There is a sequence $\{\varphi_j\}_{j\geq 1}$, $\varphi_j \in S$, such that $\|f - \varphi_j\|_{W_2^r} \underset{i \to \infty}{\longrightarrow} 0$.

The Laplace operator, the Heat equation and Fourier transform

 $\Omega = \mathbb{R}^n$, Laplace operator

$$L = -\Delta := -\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}.$$

On \mathbb{R} we have that $L(e^{iwx}) = w^2 e^{iwx}$, $\forall w \in \mathbb{R}$. Spectral representation of the operator

$$Lf(x) = -\Delta f(x) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} (f'')^{\hat{}}(w) e^{iwx} dw = \frac{1}{2\pi} \int_{-\infty}^{\infty} w^2 \hat{f}(w) e^{iwx} dw, \quad \forall f \in W_2^2(\mathbb{R}).$$

$$Lf(x) = -\Delta f(x) = -\Delta \left(\sum_{k} \hat{f}(k)e^{ikx}\right) = \sum_{k} k^{2} \hat{f}(k)e^{ikx}, \qquad \forall f \in W_{2}^{2}(\mathbb{T}).$$

The Heat equation u(x,t)

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, \\ u(x,0) = f(x). \end{cases}$$

The Gaussian (heat) Kernels satisfy the Heat equation

$$p_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{-|x|^2/4t}, \qquad \int_{\mathbb{R}^n} p_t(x) dx = 1, \qquad t > 0.$$

Semi-group $p_t * p_s = p_{t+s}, t, s > 0.$

Theorem If f is continuous and bounded then

$$u(x,t) = p_t * f(x),$$

solves the Heat equation with initial conditions f.

Sketch Easy to see

$$\left(\frac{\partial}{\partial t} - \Delta\right) u(x,t) = \int_{\mathbb{R}^n} \underbrace{\left(\frac{\partial}{\partial t} - \Delta\right) p_t(x-y) f(y) dy}_{=0} = 0.$$

$$u(x,t) = p_t * f(x) \underset{t \to 0}{\longrightarrow} f(x).$$

Spectral representation to solution of the Heat equation with boundary condition f

On
$$\mathbb{R}$$

$$e^{-tL} f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-tw^2} \hat{f}(w) e^{iwx} dw = \frac{1}{2\pi} \int_{-\infty}^{\infty} (f * p_t)^{\hat{}}(w) e^{iwx} dw = f * p_t(x) = u(x,t),$$
On \mathbb{T}
$$e^{-tL} f(x) = \sum_{k} e^{-tk^2} \hat{f}(k) e^{ikx} = \sum_{k} (p_t * f)^{\hat{}}(k) e^{ikx} = p_t * f(x) = u(x,t).$$

What is the equivalent of the partial Fourier series on \mathbb{R}^n ? Approximation from shift invariant spaces of the sinc (approximation theory course). Define $\varphi(u) = \mathbf{1}_{[-\pi,\pi]}(u)$. For any h > 0, we apply

$$\varphi(h\sqrt{L})f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(h|w|)\hat{f}(w)e^{iwx}dw$$
$$= \frac{1}{2\pi} \int_{-h^{-1}\pi}^{h^{-1}\pi} \hat{f}(w)e^{iwx}dw.$$

Maximal Functions (Stein, Chapter 1)

We work in a more general setting of a space X, with 'balls', $B(x,\delta)$, $x \in X$, $\delta > 0$, and measure μ . $\{B(x,\delta)\}$ are open sets in the topology of X. You can still think of the special case $X = \mathbb{R}^n$, $B(x,\delta) = \{y \in \mathbb{R}^n : |x-y| < \delta\}$, μ Lebesgue measure = volume.

We assume several properties:

- (i) Monotonicity $B(x, \delta_1) \subseteq B(x, \delta_2)$, for $\delta_1 \le \delta_2$, $\forall x \in X$.
- (ii) There exists $c_1 \ge 1$, such that $B(x,\delta) \cap B(y,\delta) \ne \emptyset \Rightarrow B(y,\delta) \subseteq B(x,c_1\delta)$.
- (iii) There exists $c_2 \ge 1$, such that $|B(x, c_1 \delta)| \le c_2 |B(x, \delta)|$ ("doubling condition").
- (iv) $\bigcap_{\delta>0} \overline{B}(x,\delta) = \{x\}, \ \forall x \in X.$

Example $X = \mathbb{R}^n$. We can choose, $c_1 = 3$ and $c_2 = c_1^n$, since

$$|B(x,c_1\delta)| = c(n)(c_1\delta)^n = c_1^n c(n)\delta^n = c_1^n |B(x,\delta)|.$$

Example for the construction of balls Let $\rho: X \times X \to \mathbb{R}_+$, be a quasi-distance satisfying with $\kappa \ge 1$

- (i) $\rho(x, y) = 0 \Leftrightarrow x = y$
- (ii) $\rho(x, y) = \rho(y, x)$
- (iii) $\rho(x,y) \le \kappa(\rho(x,z) + \rho(y,z))$

Then we can easily define balls by

$$B(x,\delta) := \{ y \in X : \rho(x,y) < \delta \}.$$

These balls satisfy properties (i), (ii) above. To see (ii), assume $B(x,\delta) \cap B(y,\delta) \neq \emptyset$, then there exists $z \in B(x,\delta) \cap B(y,\delta)$. By the quasi-triangle inequality

$$\rho(x,y) \le \kappa(\rho(x,z) + \rho(y,z)) \le 2\kappa\delta$$
.

If $w \in B(y, \delta)$, then

$$\rho(x,w) \le \kappa(\rho(x,y) + \rho(y,w)) \le \kappa(2\kappa\delta + \delta) = \underbrace{\kappa(2\kappa + 1)}_{G_s}\delta.$$

Observe that $c_1 = 3$, if $\kappa = 1 \Leftrightarrow \rho$ is a distance.

Definition $f \in L_1^{loc}(X)$, if for any compact $\Omega \subset X$, $\|f\|_{L_1(\Omega)} < \infty$.

Example Polynomials
$$P(x) = \sum_{|\alpha| < r} a_{\alpha} x^{\alpha}$$
, $P \notin L_1(\mathbb{R}^n)$, $P \in L_1^{loc}(\mathbb{R}^n)$

Definition For $f \in L_1^{loc}(X)$, we define the **centered maximal function**

$$Mf(x) := \sup_{\delta > 0} \frac{1}{|B(x,\delta)|} \int_{B(x,\delta)} |f(y)| d\mu(y).$$

and the uncentered maximal function

$$\widetilde{M}f(x) := \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| d\mu(y).$$

We claim that there exists a constant $c \ge 1$, such that

$$Mf(x) \le \tilde{M}f(x) \le cMf(x), \quad \forall x \in X.$$

Indeed, let $x \in B = B(y, \delta)$. This implies by property (ii) that $B(y, \delta) \subseteq B(x, c_1 \delta)$.

$$\frac{1}{\left|B(y,\delta)\right|} \int_{B(y,\delta)} \left|f(y)\right| d\mu(y) \leq \underbrace{\frac{\left|B(y,c_{1}^{2}\delta)\right|}{\left|B(y,\delta)\right|}}_{\leq c_{2}^{2}} \underbrace{\frac{\left|B(x,c_{1}\delta)\right|}{\left|B(y,c_{1}^{2}\delta)\right|}}_{\leq 1 \text{ using (ii)}} \underbrace{\frac{1}{\left|B(x,c_{1}\delta)\right|} \int_{B(x,c_{1}\delta)} \left|f(y)\right| d\mu(y)}_{\leq Mf(x)} \leq c_{2}^{2} Mf(x).$$

Theorem [Maximal Function Theorem] Let $f: X \to \mathbb{C}$

(i) If $f \in L_1$, then for any $\alpha > 0$

$$\left|\left\{x \in X : Mf\left(x\right) > \alpha\right\}\right| \le \frac{c}{\alpha} \|f\|_{1} \Rightarrow \|Mf\|_{1,\infty} \le c \|f\|_{1}$$

(ii) If $f \in L_p$, 1 , then

$$||Mf||_p \leq A_p ||f||_p$$

with $A_p \sim \frac{1}{p-1}$, as $p \to 1$.

Example $X = \mathbb{R}$, $f = \mathbf{1}_{[-1,1]}$. Obviously $||f||_1 = 2$. Easy to see that for $x \in (-1,1)$, Mf(x) = 1. Why? Take $\delta > 0$ small enough such that $B(x,\delta) \subset (-1,1)$, then

$$\frac{1}{\left|B(x,\delta)\right|}\int_{B(x,\delta)}\left|f(y)\right|dy = \frac{1}{\left|B(x,\delta)\right|}\int_{B(x,\delta)}dy = 1$$

However, for $x \notin [-1,1]$

$$Mf(x) = \sup_{\delta > 0} \frac{1}{\left| (x - \delta, x + \delta) \right|} \int_{x - \delta}^{x + \delta} \mathbf{1}_{[-1,1]}(y) dy = \frac{1}{\delta = |x| + 1} \frac{1}{2(|x| + 1)} \int_{[-1,1]} dy = \frac{1}{2(|x| + 1)}.$$

And so $Mf \in L_p$, $1 , but <math>Mf \notin L_1$. However, $Mf \in L_{1,\infty}$. To see that, first observe that $||Mf||_{\infty} \le 1$. Thus, $\{x \in \mathbb{R} : Mf(x) > 1\} = \emptyset$. For any $0 < \alpha < 1/4$

$$\alpha \left| \left\{ x \in \mathbb{R} : Mf(x) > \alpha \right\} \right| = 2\alpha + \alpha \left| \left\{ \left| x \right| \ge 1 : \frac{1}{2(\left| x \right| + 1)} > \alpha \right\} \right|$$

$$\le 2\alpha + 1 - 2\alpha = 1$$

For $1/4 < \alpha < 1$,

$$\alpha \left| \left\{ x \in \mathbb{R} : Mf(x) > \alpha \right\} \right| = 2\alpha + \alpha \left| \left\{ \left| x \right| \ge 1 : \frac{1}{2(\left| x \right| + 1)} > \alpha \right\} \right|$$

$$\le 2\alpha + 0 \le 2$$

So, $||f||_{1,\infty} \le 2$.

To prove the theorem, we need Vitali's covering lemma

Lemma Under our assumptions on balls, let E be a finite union of balls. Then, one can select a pairwise disjoint subset $\{B_j\}_{j=1}^J$, such that

$$|E| \le c_2 \sum_{j=1}^{J} |B_j|.$$

Proof Choose $B_1(x_1, \delta_1)$ as the ball of maximal radius. Next choose $B_2(x_2, \delta_2)$, such that $B_1 \cap B_2 = \emptyset$, with maximal radius $\delta_2 \le \delta_1$. We continue the process until we can go no further. From our construction, the subset $\left\{B_j\right\}_{j=1}^J$ consists of pairwise disjoint balls. Any ball from the original set intersects with one of the balls $\left\{B_j\right\}_{j=1}^J$ otherwise it would have been added. By properties (i) and (ii), each ball $B_j(x_j, c_1 \delta_j)$ contains all balls that intersect with $B_j(x_j, \delta_j)$, with radius $\le \delta_j$. Therefore, $E \subseteq \bigcup_{i=1}^J B_j(x_j, c_1 \delta_j)$, and by property (iii)

$$|E| \leq \left| \bigcup_{j=1}^{J} B_j \left(x_j, c_1 \delta_j \right) \right| \leq \sum_{j=1}^{J} \left| B_j \left(x_j, c_1 \delta_j \right) \right| \leq c_2 \sum_{j=1}^{J} \left| B_j \right|.$$

Proof of maximal theorem It is sufficient to prove the theorem for the uncentered maximal function \tilde{M} . Denote by $E_{\alpha} \coloneqq \left\{ x \in X : \tilde{M}f\left(x\right) > \alpha \right\}$. We <u>assume</u> that E_{α} is open! Let $E \subseteq E_{\alpha}$ be a compact subset. By definition, for each $x \in E$, there exists a ball B_x , such that $x \in B_x$ and

$$\alpha < \frac{1}{|B_x|} \int_{B_x} |f| \Rightarrow |B_x| < \frac{1}{\alpha} \int_{B_x} |f|.$$

Since E is compact, it can be covered by a finite collection of balls from $\{B_x\}_{x\in E}$. By the Vitali covering lemma, there exist a pairwise disjoint subset $\{B_j\}_{j=1}^J$, such that

$$|E| \le c_2 \sum_{j=1}^{J} |B_j|.$$

This gives that

$$\left| E \right| \le c_2 \sum_{j=1}^{J} \left| B_j \right| \le c_2 \frac{1}{\alpha} \sum_{j=1}^{J} \int_{B_j} \left| f \right| \le c_2 \frac{1}{\alpha} \int_{X} \left| f \right|.$$

We now <u>assume</u> that since E_{α} is open, it is a limit of a sequence of compact set $E \subseteq E_{\alpha}$ (this is true if $X = \mathbb{R}^n$, or is a σ -compact metric space). Therefore, we obtain (i)

$$\alpha \left| E_{\alpha} \right| = \alpha \left\{ x \in X : \tilde{M}f(x) > \alpha \right\} \le c_2 \int_{Y} \left| f \right|, \quad \forall \alpha > 0 \quad \Rightarrow \left\| Mf \right\|_{1,\infty} \le c \left\| f \right\|_{1}.$$

We now prove (ii). For $p = \infty$, it is obvious that

$$\frac{1}{|B|} \int_{B} |f| \leq ||f||_{\infty} \Rightarrow Mf(x) \leq \tilde{M}f(x) \leq ||f||_{\infty}.$$

Let $1 . For <math>\alpha > 0$, let

$$f_1(x) := \begin{cases} f(x), & |f(x)| > \alpha/2, \\ 0, & \text{else.} \end{cases}$$

We have for $x \in B$

$$\begin{split} \frac{1}{|B|} \int_{B} |f| &= \frac{1}{|B|} \left(\int_{y \in B, |f(y)| > \alpha/2} |f(y)| d\mu(y) + \int_{y \in B, |f(y)| \le \alpha/2} |f(y)| d\mu(y) \right) \\ &\leq \frac{1}{|B|} \int_{B} |f_{1}| + \frac{\alpha}{2} \\ &\leq \tilde{M} f_{1}(x) + \frac{\alpha}{2}. \end{split}$$

This gives

$$\tilde{M}f(x) \le \tilde{M}f_1(x) + \frac{\alpha}{2} \Longrightarrow \{x \in X : \tilde{M}f(x) > \alpha\} \subseteq \{x \in X : \tilde{M}f_1(x) > \alpha/2\}.$$

Next, we have

$$f \in L_p \Rightarrow \begin{cases} \left| \operatorname{supp} \left(f_1 \right) \right| < \infty \\ f_1 \in L_p, \ 1 < p \end{cases} \quad \underset{\text{Lemma from lesson 1}}{\Longrightarrow} \quad f_1 \in L_1.$$

This means we may apply the first part of the theorem for f_1

$$\left|\left\{x \in X : \tilde{M}f(x) > \alpha\right\}\right| \leq \left|\left\{x \in X : \tilde{M}f_{1}(x) > \alpha / 2\right\}\right|$$

$$\leq \frac{2c_{2}}{\alpha} \int_{X} \left|f_{1}\right|$$

$$= \frac{2c_{2}}{\alpha} \int_{\left\{x: |f(x)| > \alpha / 2\right\}} \left|f(x)\right|$$

Finally,

$$\begin{split} & \left\| \tilde{M}f \right\|_{p}^{p} = p \int_{0}^{\infty} \left| \left\{ x : \tilde{M}f(x) > \alpha \right\} \right| \alpha^{p-1} d\alpha \\ & \leq 2c_{2} p \int_{0}^{\infty} \alpha^{p-2} \left(\int_{\left\{ x : |f(x)| > \alpha/2 \right\}} |f| \right) d\alpha \\ & = 2c_{2} p \int_{X} \left(\int_{0}^{2|f(x)|} \alpha^{p-2} d\alpha \right) |f(x)| d\mu(x) \\ & = \frac{c_{2} p 2^{p}}{p-1} \int_{X} |f(x)|^{p-1} |f(x)| d\mu(x) \\ & = A_{p} \left\| f \right\|_{p}^{p} \end{split}$$

Hardy Spaces (Stein, Chapter 3)

Remark The Hardy spaces $H^p(\mathbb{R}^n)$ are equivalent to the $L_p(\mathbb{R}^n)$ spaces for $1 . They are different from <math>L_p$, for 0 . For many applications and from harmonic analysis perspective, they are the more appropriate choice for the range <math>0 .

Fix $\varphi \in S$, $\int_{\mathbb{R}^n} \varphi = 1$. We define $\varphi_t(x) := t^{-n} \varphi(t^{-1}x)$. Easy to see that $\int_{\mathbb{R}^n} \varphi_t = 1$.

Definition For $f \in S'$, we define the **radial maximal function** $M_{\varphi}^{\circ} f(x) := \sup_{t \ge 0} |f * \varphi_t(x)|$.

We are interested to investigate properties of such maximal functions. Why? Let's go back to the solution of the heat equation $u(x,t) = p_t * f(x)$, where f is the initial condition at t = 0.

Theorem Let φ is non-negative, radial $(\varphi(x) = \tilde{\varphi}(|x|), \tilde{\varphi} : \mathbb{R}_+ \to \mathbb{C})$, and radially decreasing, with $\int_{\mathbb{R}^n} \varphi = 1$. Then, for any $f \in L_1^{loc}$

$$M_{\alpha}^{0}f(x) \leq Mf(x), \forall x \in \mathbb{R}^{n}$$
.

Corollary If the initial condition f to the heat equation is in L_p , $1 , then the solution stays in <math>L_p$ at all times. Indeed, using the above theorem together with the maximal theorem for the normalized Gaussian

$$\varphi(x) := \frac{1}{(4\pi)^{n/2}} e^{-|x|^2/4},$$

yields

$$\left\|u\left(\cdot,t'\right)\right\|_{p} \leq \left\|\sup_{t>0}\left|u\left(\cdot,t\right)\right|\right\|_{p} = \left\|M_{\varphi}^{\circ}f\right\|_{p} \leq \left\|Mf\right\|_{p} \leq C\left\|f\right\|_{p}.$$

Proof of the theorem

It is sufficient to prove $|f * \phi(x)| \le Mf(x)$, for any ϕ , non-negative, radial, radially decreasing with $\int_{\mathbb{R}^n} \phi = 1$,

because we can then apply with $\phi = \varphi_t$, for any t > 0. Assume first $\phi(x) = \sum_{j=1}^{N} a_j \mathbf{1}_{B_j}(x)$, $a_j > 0$, $B_j = B(0, r_j)$.

We estimate

$$\begin{aligned} \left| f * \mathbf{1}_{B_{j}}(x) \right| &\leq \int_{\mathbb{R}^{n}} \left| f(y) \right| \mathbf{1}_{B_{j}}(x - y) \, dy \\ &= \underbrace{\int_{B(x, r_{j})} \left| f(y) \right| \, dy}_{<\infty} \\ &= \underbrace{\left| B(x, r_{j}) \right|}_{=\left| B_{j} \right|} \frac{1}{\left| B(x, r_{j}) \right|} \int_{B(x, r_{j})} \left| f(y) \right| \, dy \\ &\leq \left| B_{j} \right| Mf(x). \end{aligned}$$

Since $\int_{\mathbb{R}^n} \phi = \sum_{j=1}^N a_j \left| B_j \right| = 1,$

$$\left| f * \phi(x) \right| \leq \sum_{j=1}^{N} a_{j} \left| f * \mathbf{1}_{B_{j}}(x) \right|$$

$$\leq Mf(x) \sum_{j=1}^{N} a_{j} \left| B_{j} \right|$$

$$= Mf(x)$$

Now, any ϕ satisfying the required properties can be approximated by such radial 'step' functions.

Theorem For $1 , <math>f \in L_p \Leftrightarrow M_{\omega}^{\circ} f \in L_p$.

Definition For $N \in \mathbb{N}$, we define $S_N := \left\{ \varphi \in S : C_{\varphi} \left(\alpha, N \right) \leq 1, \ \left| \alpha \right| \leq N \right\}$. That is, $\left| \partial^{\alpha} \varphi \left(x \right) \right| \left(1 + \left| x \right| \right)^N \leq 1, \quad x \in \mathbb{R}^n, \ \left| \alpha \right| \leq N.$

Definition For $\varphi \in S$, $\int_{\mathbb{R}^n} \varphi = 1$, we define the **non-tangential maximal function**

$$M_{\varphi}f(x) = \sup_{t>0} \sup_{|y|0} \sup_{|x-z|$$

It is easy to see that $M_{\omega}^{\circ} f(x) \leq M_{\omega} f(x)$.

Definition We define the grand radial maximal function

$$M_N^{\circ} f(x) = \sup_{\varphi \in S_N} \sup_{t>0} |f * \varphi_t(x)|.$$

It is easy to see that $M_{\varphi}^{\circ} f(x) \leq C(\varphi, N) M_{N}^{\circ} f(x)$, because

$$\frac{\varphi}{C(\varphi,N)} \in S_N$$
, where $C(\varphi,N) := \max_{|\alpha| \le N} C_{\varphi}(\alpha,N)$.

Definition Let 0 . The**Hardy space** $<math>H^p(\mathbb{R}^n)$ is defined as the set of tempered distributions $f \in S'$, such that with N > n/p, $||f||_{H^p} := ||M_N^{\circ} f||_n < \infty$.

Example $f \in H^1(\mathbb{R})$

$$f(x) := \begin{cases} 1 & 0 \le x \le 1/2 \\ -1 & 1/2 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

The Hardy spaces are quasi-Banach spaces. Observe that $\left\| \cdot \right\|_{H^p}$, satisfies the quasi-triangle inequality

$$M_{N}^{\circ}(f+g)(x) = \sup_{\varphi \in S_{N}} \sup_{t>0} \left| (f+g) * \varphi_{t}(x) \right|$$

$$\leq \sup_{\varphi \in S_{N}} \sup_{t>0} \left(\left| f * \varphi_{t}(x) \right| + \left| g * \varphi_{t}(x) \right| \right)$$

$$\leq \sup_{\varphi \in S_{N}} \sup_{t>0} \left| f * \varphi_{t}(x) \right| + \sup_{\tilde{\varphi} \in S_{N}} \sup_{\tilde{t}>0} \left| g * \tilde{\varphi}_{\tilde{t}}(x) \right|$$

$$\leq M_{N}^{\circ} f(x) + M_{N}^{\circ} g(x).$$

So,

$$\left\| M_{N}^{\circ} \left(f + g \right) \right\|_{p}^{p} \leq \left\| M_{N}^{\circ} f + M_{N}^{\circ} g \right\|_{p}^{p}$$

$$\leq \left\| M_{N}^{\circ} f \right\|_{p}^{p} + \left\| M_{N}^{\circ} g \right\|_{p}^{p}.$$

Theorem Let $0 . Then for any <math>f \in S'$, and $\varphi \in S$, $\int_{\mathbb{R}^n} \varphi = 1$, and sufficiently large N > n/p $\|M_N^{\circ} f\|_p \sim \|M_{\varphi}^{\circ} f\|_p \sim \|M_{\varphi} f\|_p$.

We shall prove parts of the theorem, using a series of results.

Lemma Let $\phi \in S$, then $\hat{\phi} \in S$, with $C_{\hat{\phi}}(\alpha, N) \leq \tilde{C} \sum_{|\beta| \leq |\alpha|+N} C_{\phi}(\beta, n+1)$. Also $\phi^{\vee} \in S$.

Sketch of proof Let's demonstrate with the univariate case. Let's estimate the decay of $\hat{\phi}$. For $w \in \mathbb{R}$, |w| < 1

$$|\hat{\phi}(w)| \le \int_{-\infty}^{\infty} |\phi(x)| dx = \int_{-\infty}^{\infty} |\phi(x)| (1+|x|)^2 (1+|x|)^{-2} dx \le CC_{\phi}(0,2).$$

For $w \in \mathbb{R}$, $|w| \ge 1$

$$\hat{\phi}(w) = \int_{-\infty}^{\infty} \phi(x) e^{-iwx} dx = \phi(x) \frac{e^{-iwx}}{-iw} \Big|_{-\infty}^{\infty} + \frac{1}{iw} \int_{-\infty}^{\infty} \phi'(x) e^{-iwx} dx = \frac{1}{iw} (\phi')^{\hat{}}(w).$$

After r times,

$$\left|\hat{\phi}(w)\right| \le |w|^{-r} \int_{-\infty}^{\infty} |\phi^{(r)}(x)| dx = |w|^{-r} \int_{-\infty}^{\infty} |\phi^{(r)}(x)| (1+|x|)^{2} (1+|x|)^{-2} dx \le CC_{\phi}(r,2)|w|^{-r}.$$

And so,

$$C_{\hat{\beta}}(0,r) \leq C(C_{\phi}(0,2) + C_{\phi}(r,2))$$

Now, the derivative of $\hat{\phi}$

$$\frac{d}{dw}\hat{\phi}(w) = \frac{d}{dw}\left(\int_{-\infty}^{\infty} \phi(x)e^{-iwx}dx\right) = \int_{-\infty}^{\infty} (-ix\phi(x))e^{-iwx}dx.$$

For $w \in \mathbb{R}$, |w| < 1

$$\left| \frac{d}{dw} \hat{\phi}(w) \right| \leq \int_{-\infty}^{\infty} |x\phi(x)| dx = \int_{-\infty}^{\infty} |\phi(x)| (1+|x|)^{3} \frac{|x|}{1+|x|} (1+|x|)^{-2} dx$$

$$\leq C_{\phi}(0,3) \int_{-\infty}^{\infty} (1+|x|)^{-2} dx = CC_{\phi}(0,3).$$

For $w \in \mathbb{R}$, $|w| \ge 1$

$$\frac{d}{dw}\hat{\phi}(w) = \int_{-\infty}^{\infty} (-ix\phi(x))e^{-iwx}dx$$

$$= \underbrace{(-ix\phi(x))\frac{e^{-iwx}}{-iw}\Big|_{-\infty}^{\infty}}_{=0} + \frac{1}{iw}\int_{-\infty}^{\infty} (-ix\phi(x))'e^{-iwx}dx$$

$$= \frac{1}{w} \left(\int_{-\infty}^{\infty} \phi(x)e^{-iwx}dx + \int_{-\infty}^{\infty} x\phi'(x)e^{-iwx}dx\right)$$

Thus,

$$\left| \frac{d}{dw} \hat{\phi}(w) \right| \leq \frac{1}{|w|} \left(\int_{-\infty}^{\infty} |\phi(x)| dx + \int_{-\infty}^{\infty} |x\phi'(x)| dx \right)$$

$$= \frac{1}{|w|} \left(\int_{-\infty}^{\infty} |\phi(x)| (1+|x|)^{2} (1+|x|)^{-2} dx + \int_{-\infty}^{\infty} |\phi'(x)| (1+|x|)^{3} \frac{|x|}{1+|x|} (1+|x|)^{-2} dx \right)$$

$$\leq \frac{C}{|w|} \left(C_{\phi}(0,2) + C_{\phi}(1,3) \right).$$

The next theorem allows to pass from one Schwartz function to another.

Theorem Let $\varphi, \phi \in S$, with $\int_{\mathbb{R}^n} \varphi = 1$. Then there exists a sequence $\{\eta_k\}_{k=0}^{\infty}$, $\eta_k \in S$, such that

$$\phi = \sum_{k=0}^{\infty} \eta_k * \varphi_{2^{-k}} ,$$

where η_k are 'rapidly decreasing' with k, in the following sense: for any M > 0, $\alpha \in \mathbb{Z}_+^n$, and N > 0,

$$C_{n_k}(\alpha,N) \leq C(M,\alpha,N,\varphi,\phi)2^{-Mk}$$
.

Proof Recall the frequency-side smooth windows. We defined $\psi \in S$, and then $\hat{\psi}_k(w) := \hat{\psi}(2^{-k}w)$, $k \in \mathbb{Z}$,

 $\operatorname{supp}(\hat{\psi}_k) = \left\{ w \in \mathbb{R}^n : 2^{k-1} \le |w| \le 2^{k+1} \right\}, \text{ with } \sum_{k=-\infty}^{\infty} \hat{\psi}_k \equiv 1. \text{ One can modify by selecting } \hat{\psi}_0$

 $\operatorname{supp}(\hat{\psi}_0) = \left\{ w \in \mathbb{R}^n : \ 0 \le |w| \le 2 \right\}, \text{ and then } \sum_{k=0}^{\infty} \hat{\psi}_k \equiv 1. \text{ Therefore, we have}$

$$\hat{\phi} = \sum_{k=0}^{\infty} \hat{\psi}_k \hat{\phi} .$$

Under the assumption that $\int \varphi = \hat{\varphi}(0) = 1$, and from the continuity of $\hat{\varphi}$, we may assume for a moment that $|\hat{\varphi}(w)| \ge 1/2$, for $|w| \le 2$. This allows to write (under the assumption 0/0=0)

$$\hat{\phi}(w) = \sum_{k=0}^{\infty} \frac{\hat{\psi}_k(w)}{\hat{\phi}(2^{-k}w)} \hat{\phi}(w) \hat{\phi}(2^{-k}w) = \sum_{k=0}^{\infty} \hat{\eta}_k(w) \hat{\phi}(2^{-k}w).$$

For each $k \ge 1$,

$$w \in \operatorname{supp}(\hat{\psi}_k) \Rightarrow 2^{k-1} \le |w| \le 2^{k+1} \Rightarrow 2^{-1} \le 2^{-k} |w| \le 2 \Rightarrow |\hat{\varphi}(2^{-k}w)| \ge 1/2$$
.

So, one can see that $\hat{\eta}_k \in S \Rightarrow \eta_k \in S$. Observe that

$$(\varphi_{2^{-k}})^{\hat{}}(w) = 2^{kn} \int_{\mathbb{R}^n} \varphi(2^k x) e^{-iwx} dx = \int_{\mathbb{R}^n} \varphi(y) e^{-iw2^{-k} y} dy = \hat{\varphi}(2^{-k} w).$$

This gives

$$\phi = \sum_{k=0}^{\infty} \eta_k * \varphi_{2^{-k}} .$$

We now show that $\{\eta_k\}$ are 'rapidly decreasing' with k. It is sufficient to show this for $\{\hat{\eta}_k\}$. Let's look at the frequency side

$$\operatorname{supp}(\hat{\eta}_k) = \operatorname{supp}\left(\frac{\hat{\psi}_k}{\hat{\varphi}(2^{-k}\cdot)}\hat{\phi}\right) = \left\{w \in \mathbb{R}^n : 2^{k-1} \le |w| \le 2^{k+1}\right\}.$$

By the previous lemma $\hat{\phi} \in S$, with Schwartz constants that depend on the constants of ϕ . So, for any L > 0, $w \in \text{supp}(\hat{\eta}_k)$

$$\begin{aligned} \left| \hat{\eta}_{k} (w) \right| &\leq 2 \left| \hat{\phi} (w) \right| \\ &= 2 \left| \hat{\phi} (w) \right| (1 + |w|)^{M+L} (1 + |w|)^{-(M+L)} \\ &\leq 2 C_{\hat{\phi}} (0, M+L) (1 + |w|)^{-L} (1 + 2^{k-1})^{-M} \\ &\leq C (\phi, M+L) (1 + |w|)^{-L} 2^{-kM}. \end{aligned}$$

So

$$C_{\hat{n}}(0,L) \leq C(\phi, M+L)2^{-kM}$$

In similar manner, for the derivatives.

We now deal with the assumption that $|\hat{\varphi}(w)| \ge 1/2$, for $|w| \le 2$. By continuity of $\hat{\varphi}$, there exists $k_0 \ge 0$, such that $|\hat{\varphi}(2^{-k_0}w)| \ge 1/2$, for $|w| \le 2$. Apply the proof to $\Phi := (\hat{\varphi}(2^{-k_0}v))^{\vee} = 2^{k_0n}\phi(2^{k_0}v)$

$$2^{k_{0}n}\phi(2^{k_{0}}x) = \Phi(x) = \sum_{k=0}^{\infty} \tilde{\eta}_{k} * \varphi_{2^{-k}}(x) \Rightarrow$$

$$\phi(x) = \sum_{k=0}^{\infty} \underbrace{2^{-k_{0}n} \tilde{\eta}_{k}}_{\eta_{k+k_{0}}} * \varphi_{2^{-k}}(2^{k_{0}}x) \Rightarrow$$

$$\phi(x) = \sum_{k=k_{0}}^{\infty} \eta_{k} * \varphi_{2^{-k}}(x) \Rightarrow$$

$$\phi(x) = \sum_{k=0}^{\infty} \eta_{k} * \varphi_{2^{-k}}(x), \quad \eta_{k} := 0, \ 0 \le k < k_{0}.$$

Definition We define for $\varphi \in S$ and $N \in \mathbb{N}$

$$T_{\varphi}^{N} f(x) = \sup_{t>0} \sup_{y \in \mathbb{R}^{n}} \left| f * \varphi_{t}(x-y) \right| \left(1 + \frac{|y|}{t} \right)^{-N}.$$

Observe that

$$M_{\varphi} f(x) = \sup_{t>0} \sup_{|y| < t} |f * \varphi_{t}(x - y)|$$

$$= \sup_{t>0} \sup_{|y| < t} |f * \varphi_{t}(x - y)| \left(1 + \frac{|y|}{t}\right)^{-N} \left(1 + \frac{|y|}{t}\right)^{N}$$

$$\leq 2^{N} \sup_{t>0} \sup_{y \in \mathbb{R}^{n}} |f * \varphi_{t}(x - y)| \left(1 + \frac{|y|}{t}\right)^{-N}$$

$$= 2^{N} T_{\alpha}^{N} f(x)$$

The next lemma is the inverse of the above

Lemma If $M_{\varphi}f \in L_p(\mathbb{R}^n)$, and N > n/p, then

$$||T_{\varphi}^{N} f||_{p} \leq c(N, p, \varphi) ||M_{\varphi} f||_{p}.$$

Theorem Let $\varphi \in S$, with $\int_{\mathbb{R}^n} \varphi = 1$. Then, for sufficiently large N > n / p

$$\|\boldsymbol{M}_{N}^{\circ}f\|_{p} \leq c \|\boldsymbol{M}_{\varphi}f\|_{p}.$$

Proof Let $\phi \in S_N$. Then, by a previous theorem, there exists a sequence $\{\eta_k\}$ with 'fast decreasing properties with k' such that

$$\phi = \sum_{k=0}^{\infty} \eta_k * \varphi_{2^{-k}}$$
.

This gives

$$M_{\phi}^{\circ} f(x) = \sup_{t>0} |f * \phi_t(x)| \le \sup_{t>0} \sum_{k=0}^{\infty} |f * (\eta_k * \varphi_{2^{-k}})_t(x)|.$$

Observe that (assignment)

$$(\eta_k * \varphi_{2^{-k}})_t(z) = (\eta_k)_t * \varphi_{2^{-k}t}(z).$$

This allows to estimate

$$\begin{split} M_{\phi}^{\circ} f(x) &\leq \sup_{t>0} \sum_{k=0}^{\infty} \left| f * (\eta_{k})_{t} * \varphi_{2^{-k} t}(x) \right| \\ &\leq \sup_{t>0} \sum_{k=0}^{\infty} \int_{\mathbb{R}^{n}} \left| f * \varphi_{2^{-k} t}(x-y) \right| \left| (\eta_{k})_{t}(y) \right| dy \\ &= \sup_{t>0} \sum_{k=0}^{\infty} \int_{\mathbb{R}^{n}} \left| f * \varphi_{2^{-k} t}(x-y) \right| \left(1 + \frac{|y|}{2^{-k} t} \right)^{-N} \left(1 + \frac{|y|}{2^{-k} t} \right)^{N} \left| (\eta_{k})_{t}(y) \right| dy \\ &\leq T_{\varphi}^{N}(x) \sup_{t>0} \sum_{k=0}^{\infty} \int_{\mathbb{R}^{n}} \left(1 + \frac{|y|}{2^{-k} t} \right)^{N} \left| (\eta_{k})_{t}(y) \right| dy \end{split}$$

For any t > 0

$$\int_{\mathbb{R}^{n}} \left(1 + \frac{|y|}{2^{-k}t} \right)^{N} \left| (\eta_{k})_{t} (y) \right| dy = t^{-n} \int_{\mathbb{R}^{n}} \left(1 + \frac{|y|}{2^{-k}t} \right)^{N} \left| \eta_{k} (t^{-1}y) \right| dy$$

$$= \int_{\mathbb{R}^{n}} \left(1 + 2^{k} |z| \right)^{N} \left| \eta_{k} (z) \right| dz$$

$$\leq C 2^{kN} C_{\eta_{k}} (0, N + n + 1)$$

$$\leq C 2^{kN} 2^{-k(N+1)}$$

$$\leq C 2^{-k}$$

We get

$$M_{\phi}^{\circ} f(x) \leq CT_{\varphi}^{N}(x)$$
.

Finally, using the previous lemma

$$\left\|\boldsymbol{M}_{N}^{\circ}f\right\|_{p} = \sup_{\phi \in \mathcal{S}_{N}} \left\|\boldsymbol{M}_{\phi}^{\circ}f\right\|_{p} \leq C \left\|\boldsymbol{T}_{\varphi}^{N}f\right\|_{p} \leq C \left\|\boldsymbol{M}_{\varphi}f\right\|_{p},$$

where for sufficiently large N, the constant does not depend on the choice of ϕ (sufficiently high order Schwarz constants are normalized).

Theorem Let $\varphi \in S$, with $\int_{\mathbb{R}^n} \varphi = 1$. Then,

$$\|M_{\varphi}f\|_{p} \leq c \|M_{\varphi}^{\circ}f\|_{p}, \quad f \in S'.$$

Proof We will prove the theorem under the <u>assumption</u> that $\|M_{\varphi}f\|_p < \infty$. There are quite a few technicalities that are required to remove this assumption (see e.g. Stein). For $\lambda > 0$, let

$$\Omega_{\lambda} := \left\{ x \in \mathbb{R}^{n} : M_{N}^{\circ} f(x) \leq \lambda M_{\varphi} f(x) \right\}.$$

Take $\lambda^p \ge 2c^p$, where c > 0 is from the previous theorem $(\|M_N^{\circ} f\|_p \le c \|M_{\varphi} f\|_p)$. Then,

$$\begin{split} &\int_{\Omega_{\lambda}^{c}} \left(\boldsymbol{M}_{\varphi} f\right)^{p} \leq \lambda^{-p} \int_{\Omega_{\lambda}^{c}} \left(\boldsymbol{M}_{N}^{\circ} f\right)^{p} \\ &\leq \lambda^{-p} \int_{\mathbb{R}^{n}} \left(\boldsymbol{M}_{N}^{\circ} f\right)^{p} \\ &\leq c^{p} \lambda^{-p} \int_{\mathbb{R}^{n}} \left(\boldsymbol{M}_{\varphi} f\right)^{p} \leq \frac{1}{2} \int_{\mathbb{R}^{n}} \left(\boldsymbol{M}_{\varphi} f\right)^{p} \,. \end{split}$$

This gives (under the <u>assumption!</u>)

$$\int_{\mathbb{R}^{n}} (M_{\varphi} f)^{p} = \int_{\Omega_{\lambda}} (M_{\varphi} f)^{p} + \int_{\Omega_{\lambda}^{c}} (M_{\varphi} f)^{p} \\
\leq \int_{\Omega_{\lambda}} (M_{\varphi} f)^{p} + \frac{1}{2} \int_{\mathbb{R}^{n}} (M_{\varphi} f)^{p} \Rightarrow \\
\int_{\mathbb{R}^{n}} (M_{\varphi} f)^{p} \leq 2 \int_{\Omega_{\lambda}} (M_{\varphi} f)^{p}$$

Assume that for any q > 0 and $x \in \Omega_{\lambda}$

$$M_{\varphi}f(x) \le c \left[M \left(M_{\varphi}^{\circ} f \right)^{q} (x) \right]^{1/q}.$$
 (*)

Then, we can take 0 < q < p and apply the maximal function theorem for r := p / q > 1

$$\int_{\mathbb{R}^{n}} \left(M_{\varphi} f(x) \right)^{p} dx \leq 2 \int_{\Omega_{\lambda}} \left(M_{\varphi} f(x) \right)^{p} dx
\leq C \int_{\Omega_{\lambda}} \left[M \left(M_{\varphi}^{\circ} f \right)^{q} (x) \right]^{p/q} dx
\leq C \int_{\mathbb{R}^{n}} \left[M \left(M_{\varphi}^{\circ} f \right)^{q} (x) \right]^{p/q} dx
\leq C \int_{\mathbb{R}^{n}} \left[\left(M_{\varphi}^{\circ} f \right)^{q} (x) \right]^{p/q} dx
= C \int_{\mathbb{R}^{n}} \left(M_{\varphi}^{\circ} f(x) \right)^{p} dx.$$

It remains to prove (*). Let $F^{\circ}(y,t) := f * \varphi_t(y)$. For any $x \in \mathbb{R}^n$, there exist $y \in \mathbb{R}^n$, t > 0, |x - y| < t, such that

$$|F^{\circ}(y,t)| \ge \sup_{t>0} \sup_{|x-y|< t} |f * \varphi_t(y)| / 2 = M_{\varphi}(x) / 2.$$

For sufficiently small r > 0 (to be chosen later), and $x' \in B(y, rt)$,

$$\left|F^{\circ}(x',t)-F^{\circ}(y,t)\right| \leq rt \sup_{z\in B(y,rt)} \left|\nabla F^{\circ}(z,t)\right|.$$

Observe that

$$\frac{\partial}{\partial z_i} F^{\circ}(z,t) = f * \frac{\partial}{\partial z_i} \varphi_t(z) = t^{-1} f * \left(\frac{\partial \varphi}{\partial z_i}\right)_t(z), \quad 1 \le i \le n.$$

For the set of functions

$$\mathcal{F} := \left\{ \frac{\partial \varphi}{\partial z_i} (\cdot + h) : 1 \le i \le n, |h| \le 1 + r \right\},$$

the Schwartz constants of order $\leq N$ are uniformly bounded by a constant depending on φ and r. Since for $z \in B(y,rt)$, $t^{-1}|x-z| \leq t^{-1}(|x-y|+|y-z|) \leq 1+r$

$$\left| f * \left(\frac{\partial \varphi}{\partial z_i} \right)_t (z) \right| = \left| f * \left(\frac{\partial \varphi}{\partial z_i} \left(\cdot + t^{-1} (z - x) \right) \right)_t (x) \right|$$

$$\leq \sup_{\psi \in \mathcal{F}} \sup_{t > 0} \left| f * \psi_t (x) \right|$$

$$\leq c M_N^{\circ} f (x).$$

Thus, for $x \in \Omega_{\lambda}$

$$\left| F^{\circ}(x',t) - F^{\circ}(y,t) \right| \le crM_{N}^{\circ} f(x)$$

$$\le c\lambda rM_{\omega} f(x)$$

Now choose r sufficiently small such that $c\lambda r \le 1/4$. Therefore

$$\frac{\left|F^{\circ}(y,t)\right| \geq M_{\varphi}f(x)/2}{\left|F^{\circ}(x',t) - F^{\circ}(y,t)\right| \leq M_{\varphi}f(x)/4} \Longrightarrow \left|F^{\circ}(x',t)\right| \geq \frac{M_{\varphi}f(x)}{4}, \quad x' \in B(y,rt).$$

Therefore since $B(y,rt) \subset B(x,(1+r)t)$

$$\left(M_{\varphi}f\left(x\right)\right)^{q} \leq \frac{4^{q}}{\left|B\left(y,rt\right)\right|} \int_{B\left(y,rt\right)} \left|F^{\circ}\left(x',t\right)\right|^{q} dx'
\leq C \frac{\left|B\left(x,t\left(1+r\right)\right)\right|}{\left|B\left(y,rt\right)\right|} \frac{1}{\left|B\left(x,t\left(1+r\right)\right)\right|} \int_{B\left(x,t\left(1+r\right)\right)} \left|F^{\circ}\left(x',t\right)\right|^{q} dx'
\leq C \frac{\left(1+r\right)^{n}}{r^{n}} M\left(M_{\varphi}^{\circ}f\right)^{q} (x)
\leq C M\left(M_{\varphi}^{\circ}f\right)^{q} (x).$$

Atomic Hardy Spaces

Definition A function $a: \mathbb{R}^n \to \mathbb{C}$, is an atom for 0 , if

- (i) $\sup(a) \subseteq B$, for some ball B,
- (ii) $||a||_{\infty} \leq |B|^{-1/p}$,
- (iii) $\int x^{\alpha} a(x) dx = 0$, $\forall \alpha \in \mathbb{Z}_{+}^{n}$, $|\alpha| \le n(p^{-1} 1)$. (vanishing moments property)

Notice that

$$||a||_p = \left(\int_B |a|^p\right)^{1/p} \le ||a||_\infty |B|^{1/p} \le |B|^{-1/p} |B|^{1/p} = 1.$$

Theorem For any atom a, we have that $||a||_{H^p} \le c$.

Back to the example $\mathbf{1}_{[0,1]}(\cdot) \notin H^1(\mathbb{R}) \dots$ however $f \in H^1(\mathbb{R})$

$$f(x) := \begin{cases} 1 & 0 \le x \le 1/2 \\ -1 & 1/2 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

Background on multivariate Taylor polynomials

The multivariate Taylor polynomial is given by

$$T_{r-1,\overline{x}}g(y) := \sum_{|\alpha| < r} \frac{\partial^{\alpha} g(\overline{x})}{\alpha!} (y - \overline{x})^{\alpha} \in \Pi_{r-1},$$

The estimate of Taylor remainder

$$\left|g\left(y\right)-T_{r-1,\overline{x}}g\left(y\right)\right|=\left|R_{r,\overline{x}}g\left(y\right)\right|\leq c\left|y-\overline{x}\right|^{r}\max_{z\in B\left(\overline{x},\left|y-\overline{x}\right|\right)}\max_{|\alpha|=r}\left|\partial^{\alpha}g\left(z\right)\right|\ .$$

Proof Assume a is an atom supported on $B = B(\overline{x}, r)$. Let $\varphi \in S$, $\int \varphi \neq 0$, with supp $(\varphi) = B(0,1)$. Since $\|M_N^{\circ} a\|_p \leq c \|M_{\varphi}^{\circ} a\|_p$, it is sufficient to bound $\|M_{\varphi}^{\circ} a\|_p$. The first estimate is that

$$|a*\varphi_t(x)| \le \int_{\mathbb{R}^n} |a(y)| |\varphi_t(x-y)| dy \le ||\varphi||_1 |B|^{-1/p}, \quad \forall x \in \mathbb{R}^n.$$

We use it 'near' the ball on $B_2 := B(\overline{x}, 2r)$

$$\int_{B_2} \left(M_{\varphi}^{\circ} a \right)^p \le c \left| B \right|^{-1} \left| B_2 \right| = c \frac{\left(2r \right)^n}{r^n} = c'.$$

We now estimate 'away' from the ball. Let $x \notin B_2$. Observe that for t > 0, the support of φ_t is B(0,t). If $|x - \overline{x}| > r + t$, then $\operatorname{supp}(\varphi(x - \cdot)) \cap B = \emptyset$, and

$$a * \varphi_t(x) = \int_{\mathbb{R}^n} a(y) \varphi_t(x - y) dy = \int_{\mathbb{R}^n} a(y) \varphi_t(x - y) dy = 0.$$

Otherwise, we assume $|x - \overline{x}| \le r + t$, and use the vanishing moments of a

$$a * \varphi_t(x) = \int_{\mathbb{R}^n} a(y) \varphi_t(x-y) dy = \int_B a(y) (\varphi_t(x-y) - q_{x,t}(y)) dy,$$

where

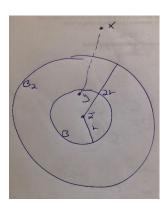
$$q_{x,t}(y) := T_{d,\overline{x}}(\varphi_t(x-\cdot))(y), \quad d := |n(p^{-1}-1)|.$$

By the estimate of the Taylor remainder

$$\left| \varphi_{t} \left(x - y \right) - q_{x,t} \left(y \right) \right| \leq c \left| y - \overline{x} \right|^{d+1} \max_{|\alpha| = d+1} \left\| \partial^{\alpha} \varphi_{t} \right\|_{\infty} = c \frac{\left| y - \overline{x} \right|^{d+1}}{t^{n+d+1}}.$$

So,

$$|x-\overline{x}| \ge 2r \implies |x-\overline{x}| \le t+r \le t+|x-\overline{x}|/2 \implies \frac{|x-\overline{x}|}{2} \le t$$
.



We get

 $\left|\varphi_{t}\left(x-y\right)-q_{x,t}\left(y\right)\right|\leq C\frac{\left|y-\overline{x}\right|^{d+1}}{\left|x-\overline{x}\right|^{n+d+1}},$

and

$$M_{\varphi}^{\circ}a(x) = \sup_{t>0} |a * \varphi_{t}(x)|$$

$$\leq \sup_{t>0} \int_{B} |a(y)| |\varphi_{t}(x-y) - q_{x,t}(y)| dy$$

$$\leq C |B|^{-1/p} \int_{B} \frac{|y-\overline{x}|^{d+1}}{|x-\overline{x}|^{n+d+1}} dy$$

$$\leq C |B|^{-1/p} \left(\frac{r}{|x-\overline{x}|}\right)^{n+d+1}.$$

Note

$$d := \lfloor n(p^{-1} - 1) \rfloor > n(p^{-1} - 1) - 1 \Rightarrow$$

$$d + 1 > n(p^{-1} - 1) \Rightarrow$$

$$p(n + d + 1) > p(n + n(p^{-1} - 1)) > n$$

We obtain

$$\begin{split} \int_{\mathbb{R}^{n}\setminus B_{2}} \left| M_{\varphi}^{\circ} a(x) \right|^{p} dx &\leq C \left| B \right|^{-1} r^{p(n+d+1)} \int_{\mathbb{R}^{n}\setminus B(\overline{x},2r)} \left| x - \overline{x} \right|^{-p(n+d+1)} dx \\ &= C \left| B \right|^{-1} r^{p(n+d+1)} \int_{\mathbb{R}^{n}\setminus B(0,2r)} \left| x \right|^{-p(n+d+1)} dx \\ &\leq C \left| B \right|^{-1} r^{p(n+d+1)} \left(2r \right)^{n-p(n+d+1)} \\ &\leq C r^{-n} r^{n} = C. \end{split}$$

Definition The atomic Hardy space $H_a^p(\mathbb{R}^n)$, is the set of all distributions $f = \sum_{k=1}^{\infty} \lambda_k a_k$, such that $\{a_k\}$ are

atoms and $\sum_{k=1}^{\infty} |\lambda_k|^p < \infty$. We set

$$\left\|f\right\|_{H^p_a} \coloneqq \inf\left\{\left(\sum_{k=1}^{\infty} \left|\lambda_k\right|^p\right)^{1/p}: \ f = \sum_{k=1}^{\infty} \lambda_k a_k\right\}.$$

Theorem $H^p(\mathbb{R}^n) \sim H_a^p(\mathbb{R}^n)$

Proof of easy direction Let $f \in H_a^p(\mathbb{R}^n)$, then $f = \sum_{k=1}^{\infty} \lambda_k a_k$, with $\sum_{k=1}^{\infty} |\lambda_k|^p < 2 \|f\|_{H_a^p}^p$. As we have seen, the

maximal functions are sublinear. Therefore, by the previous theorem

$$\left\|\boldsymbol{M}_{N}^{\circ}\boldsymbol{f}\right\|_{p}^{p} \leq \sum_{k=1}^{\infty} \left|\lambda_{k}\right|^{p} \left\|\boldsymbol{M}_{N}^{\circ}\boldsymbol{a}_{k}\right\|_{p}^{p} \leq c \sum_{k=1}^{\infty} \left|\lambda_{k}\right|^{p} \leq c \left\|\boldsymbol{f}\right\|_{H_{a}^{p}}^{p}.$$

The inverse direction is more difficult since it requires the construction of a near-optimal atomic decomposition of f.

Modulus of smoothness

Def The *difference operator* Δ_h^r . For $h \in \mathbb{R}^n$ we define $\Delta_h(f,x) = f(x+h) - f(x)$. For general $r \ge 1$ we define

$$\Delta_h^r(f,x) = \underbrace{\Delta_h \circ \cdots \Delta_h}_r(f,x) = \sum_{k=0}^r \binom{r}{k} (-1)^{r-k} f(x+kh).$$

Remarks

- 1. For $\Omega \subset \mathbb{R}^n$, we modify to $\Delta_h^r(f,x) := \Delta_h^r(f,x,\Omega)$, where $\Delta_h^r(f,x) = 0$, in the case $[x,x+rh] \not\subset \Omega$. So for $\Omega = [a,b]$, $\Delta_h^r(f,x) = 0$ on [b-rh,b], for any function.
- 2. As an operator on $L_p(\Omega)$, $1 \le p \le \infty$, we have that $\|\Delta_h^r\|_{L_n \to L_n} \le 2^r$. Assume $\Omega = \mathbb{R}^n$, then

$$\left\|\Delta_h^r(f,\bullet)\right\|_p \le \sum_{k=0}^r \binom{r}{k} \left\|f\left(\bullet + kh\right)\right\|_p = \sum_{k=0}^r \binom{r}{k} \left\|f\right\|_p = 2^r \left\|f\right\|_p$$

Def The *modulus of smoothness* of order r of a function $f \in L_p(\Omega)$, 0 , at the parameter <math>t > 0

$$\omega_r(f,t)_p \coloneqq \sup_{|h| \le t} \left\| \Delta_h^r(f,x) \right\|_{L_p(\Omega)}.$$

For r = 1 the modulus of smoothness is called the *modulus of continuity*.

Example non continuous function. Let $\Omega = \begin{bmatrix} -1,1 \end{bmatrix}$. $f(x) = \begin{cases} 0 & x < 0 \\ 1 & 0 \le x \end{cases}$

Let's compute $\omega_r(f,t)_{L_n([-1,1])}$.

$$\Delta_h(f,x) = \begin{cases} 0 & -1 \le x \le -h \\ 1 & -h < x \le 0 \\ 0 & 0 < x \le 1 \end{cases}$$

 $\text{For } p=\infty \text{ we get } \omega_{\mathbf{l}}\left(f,t\right)_{L_{\infty}\left([-1,1]\right)}=\sup_{|h|\leq t}\left\|\Delta_{h}f\right\|_{L_{\infty}\left([-1,1]\right)}=1\,.$

For $p \neq \infty$ we get $\omega_1(f,t)_{L_p([-1,1])} = \sup_{|h| \leq t} \|\Delta_h f\|_{L_p([-1,1])} = t^{1/p}$.

$$\Delta_{h}^{2}(f,x) = \Delta_{h}(\Delta_{h}f,x) = \begin{cases} 0 & -1 \le x \le -2h \\ 1 & -2h < x \le -h \\ -1 & -h < x \le 0 \\ 0 & 0 \le x \le 1 \end{cases}$$

We get $\omega_2(f,t)_{L_n([-1,1])} = (2t)^{1/p}$

In general, we get $\omega_r(f,t)_{L_p([-1,1])} \le C(r,p)t^{1/p}$

Quick jump into the "future" (Generalized Lipschitz / Besov smoothness)... for $\alpha < 1/\tau$, $r = \lfloor \alpha \rfloor + 1$,

$$\left|f\right|_{B^{\alpha}_{\tau,\infty}} \coloneqq \sup_{t>0} t^{-\alpha} \omega_r \left(f,t\right)_{\tau} \leq \sup_{0 < t \leq 2} t^{-\alpha} \omega_r \left(f,t\right)_{\tau} \leq c \sup_{0 < t \leq 2} t^{1/\tau - \alpha} < \infty.$$

We then say that f has α (weak-type) smoothness. Observe that in this example α can be arbitrarily large as long as the integration takes place with τ sufficiently small.

Properties

- 1. $\omega_r(f,t)_p \le 2^r ||f||_{L_p(\Omega)}, 1 \le p \le \infty$.
- 2. $\omega_r(f,t)_n$ is non-decreasing in t
- 3. For $1 \le p \le \infty$ the *sub-linearity* property

$$\left|\Delta_h^r(f+g,x)\right| \leq \left|\Delta_h^r(f,x)\right| + \left|\Delta_h^r(g,x)\right|,$$

gives

$$\omega_r(f+g,t)_p \leq \omega_r(f,t)_p + \omega_r(g,t)_p$$
.

4. For $N \ge 1$, $\omega_r(f, Nt)_p \le N^r \omega_r(f, t)_p$, $1 \le p \le \infty$. We prove this using the property (assignment)

$$\Delta_{Nh}^{r}(f,x) = \sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \Delta_{h}^{r}(f,x+k_{1}h+\cdots+k_{r}h).$$

Let's see the case r = 1,

$$\Delta_{Nh}(f,x) = f(x+Nh) - f(x)$$

$$= f(x+Nh) - f(x+(N-1)h) + f(x+(N-1)h) - \dots + f(x+h) - f(x)$$

$$= \sum_{h=0}^{N-1} \Delta_h(f,x+kh)$$

Then, for any $h \in \mathbb{R}^n$, $|h| \le t$

$$\begin{split} \left\| \Delta_{Nh}^{r} \left(f, \cdot \right) \right\|_{p} &\leq \sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \left\| \Delta_{h}^{r} \left(f, \cdot + k_{1}h + \cdots + k_{r}h \right) \right\|_{p} \\ &= \sum_{k_{1}=0}^{N-1} \cdots \sum_{k_{r}=0}^{N-1} \left\| \Delta_{h}^{r} \left(f, \cdot \right) \right\|_{p} \leq N^{r} \omega_{r} \left(f, t \right)_{p}. \end{split}$$

Taking supremum over all $h \in \mathbb{R}^n$, $|h| \le t$, gives $\omega_r(f,Nt)_p \le N^r \omega_r(f,t)_p$. It is easy to see that for $0 , the same proof yields <math>\omega_r(f,Nt)_p \le N^{r/p} \omega_r(f,t)_p$.

5. From (4) we get for $1 \le p \le \infty$,

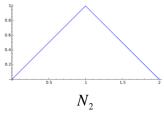
$$\omega_r(f,\lambda t)_p \le (\lambda+1)^r \omega_r(f,t)_p, \qquad \lambda > 0$$

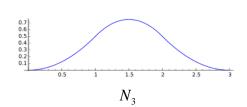
proof
$$\omega_r(f, \lambda t)_n \le \omega_r(f, \lfloor \lambda + 1 \rfloor t)_n \le (\lfloor \lambda + 1 \rfloor)^r \omega_r(f, t)_n \le (\lambda + 1)^r \omega_r(f, t)_n$$
.

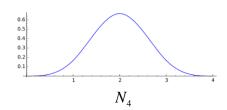
Theorem [connection between Sobolev and modulus] For $g \in W_p^r(\Omega)$, $1 \le p \le \infty$, we have that

$$\omega_r(g,t)_{L_p(\Omega)} \leq C(r,n)t^r |g|_{W_p^r(\Omega)}, \quad \forall t > 0.$$

Proof for $\Omega = \mathbb{R}$. Recall the B-Splines, $N_1 = \mathbf{1}_{[0,1]^n}$. In general, $N_r := N_{r-1} * N_1 = \int_{\mathbb{R}^n} N_{r-1} (x-t) N_1(t) dt$.







- Properties:
 - o Order r
 - \circ Support $[0,r]^n$
 - \circ Piecewise polynomial of degree r-1 with breakpoints (knots) at the integers
 - Smoothness r-2, thus in Sobolev W_p^{r-1} .
 - O Tensor-product in multivariate case $N_r(x) := \tilde{N}_r(x_1) \times \cdots \times \tilde{N}_r(x_n)$, where \tilde{N}_r is the univariate B-spline.
 - $\circ \int_{\mathbb{R}^n} N_r(x) dx = 1$

Here, we use the fact that for $h \in \mathbb{R}^n$, $\left| \Delta_{-h}^r (f, x) \right| = \left| \Delta_h^r (f, x - rh) \right|$. So, w.l.g., for any t > 0, we can work with $0 < h \le t$. Define $N_r(x,h) := h^{-1}N_r(h^{-1}x)$, h > 0. Let $g \in C^1(\mathbb{R})$. Then

$$h^{-1}\Delta_{h}(g,x) = h^{-1}(g(x+h)-g(x))$$

$$= h^{-1}\int_{x}^{x+h} g'(u)du$$

$$= \int_{\mathbb{D}} g'(x+u)N_{1}(u,h)du$$

We claim that for $g \in C^r(\mathbb{R})$

$$h^{-r}\Delta_h^r(g,x) = \int_{\mathbb{R}} g^{(r)}(x+u)N_r(u,h)du$$

To see that we apply induction

$$h^{-r}\Delta_{h}^{r}(g,x) = h^{-1}h^{-(r-1)}\left(\Delta_{h}^{r-1}(g,x+h) - \Delta_{h}^{r-1}(g,x)\right)$$

$$= h^{-1}\left(\int_{\mathbb{R}} g^{(r-1)}(x+h+u)N_{r-1}(u,h)du - \int_{\mathbb{R}} g^{(r-1)}(x+u)N_{r-1}(u,h)du\right)$$

$$= h^{-1}\int_{x+h}^{x+h}\int_{-\infty}^{\infty} g^{(r)}(v+u)N_{r-1}(u,h)dudv$$

$$= \int_{-\infty}^{\infty} N_{r-1}(u,h)\left(h^{-1}\int_{x}^{x+h} g^{(r)}(v+u)dv\right)du$$

$$= \int_{-\infty}^{\infty} N_{r-1}(u,h)\left(\int_{-\infty}^{\infty} g^{(r)}(v+u)N_{1}(v-x,h)dv\right)du$$

$$= \int_{-\infty}^{\infty} N_{r-1}(u,h)\left(\int_{-\infty}^{\infty} g^{(r)}(x+y)N_{1}(y-u,h)dy\right)du$$

$$= \int_{-\infty}^{\infty} g^{(r)}(x+y)\left(\int_{-\infty}^{\infty} N_{r-1}(u,h)N_{1}(y-u,h)du\right)dy$$

$$= \int_{-\infty}^{\infty} g^{(r)}(x+y)N_{r}(y,h)dy$$

Now, let's see the proof for p = 1. Let $0 < h \le t$

$$\int_{\mathbb{R}} \left| \Delta_{h}^{r} \left(g, x \right) \right| dx \leq h^{r} \int_{\mathbb{R}} \int_{\mathbb{R}} \left| g^{(r)} \left(x + u \right) \right| \left| N_{r} \left(u, h \right) \right| du dx
\leq h^{r} \int_{\mathbb{R}} \left| N_{r} \left(u, h \right) \right| du \int_{\mathbb{R}} \left| g^{(r)} \left(x + u \right) \right| dx
\leq t^{r} \int_{\mathbb{R}} \left| g^{(r)} \left(x \right) \right| dx
\leq t^{r} \left| g \right|_{W^{r}(\mathbb{R})}.$$

For general $1 \le p < \infty$ we need Minkowski's inequality (**assignment**). It says that for measurable non-negative functions φ, ρ

$$\left\{ \int_{A} \left(\int_{B} \varphi(y) \rho(x, y) dy \right)^{p} dx \right\}^{1/p} \leq \int_{B} \varphi(y) \left(\int_{A} \rho(x, y)^{p} dx \right)^{1/p} dy$$

Or written differently

$$\left\| \int_{B} \varphi(y) \rho(\cdot, y) dy \right\|_{L_{p}(A)} \le \int_{B} \varphi(y) \left\| \rho(\cdot, y) \right\|_{L_{p}(A)} dy$$

Using it we have

$$\int_{\mathbb{R}} \left| \Delta_{h}^{r} \left(g, x \right) \right|^{p} dx \leq h^{pr} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left| g^{(r)} \left(x + u \right) \right| \left| N_{r} \left(u, h \right) \right| du \right)^{p} dx
\leq h^{pr} \left(\int_{\mathbb{R}} \left| N_{r} \left(u, h \right) \right| \left\| g^{(r)} \left(\cdot + u \right) \right\|_{L_{p}(\mathbb{R})} du \right)^{p}
\leq h^{pr} \left(\int_{\mathbb{R}} \left| N_{r} \left(u, h \right) \right| \left\| g^{(r)} \right\|_{L_{p}(\mathbb{R})} du \right)^{p}
\leq t^{pr} \left\| g^{(r)} \right\|_{L_{p}(\mathbb{R})}^{p}
= t^{pr} \left| g \right|_{W^{r}(\mathbb{R})}^{p}.$$

For a general function $g \in W_p^r(\mathbb{R})$ we use the density of $C^r(\mathbb{R}) \cap W_p^r(\mathbb{R})$ in $W_p^r(\mathbb{R})$ (assignment)

Corollary For any $P \in \Pi_{r-1}(\mathbb{R})$, $P(x) = \sum_{k=0}^{r-1} a_k x^k$,

$$h^{-r}\Delta_h^r(P,x) = \int_{\mathbb{R}} P^{(r)}(x+u)N_r(u,h)du = 0 \Rightarrow \Delta_h^r(P,x) = 0 \Rightarrow \omega_r(P,t)_p = 0$$

Marchaud inequalities

We know that for any $1 \le k < r$, $1 \le p \le \infty$,

$$\omega_{r}\left(f,t\right)_{p} = \sup_{|h| \leq t} \left\|\Delta_{h}^{r}\left(f\right)\right\|_{p} = \sup_{|h| \leq t} \left\|\Delta_{h}^{r-k}\Delta_{h}^{k}\left(f\right)\right\|_{p} \leq 2^{r-k} \sup_{|h| \leq t} \left\|\Delta_{h}^{k}\left(f\right)\right\|_{p} = 2^{r-k} \omega_{k}\left(f,t\right)_{p}.$$

The direct inverse cannot be true. If we take $\Omega = [a,b]$ and a polynomial $P \in \Pi_{r-1}$, then $\omega_r(P,t)_p = 0$, but we don't necessarily have $\omega_k(P,t)_p = 0$ for $0 \le k < r$.

Theorem. For any $1 \le k < r$, $1 \le p \le \infty$,

On
$$\Omega = \mathbb{R}$$
, $\omega_k(f,t)_p \le ct^k \int_t^\infty \frac{\omega_r(f,s)_p}{s^{k+1}} ds$, $t > 0$.

On
$$\Omega = [a,b]$$
, $\omega_k(f,t)_p \le ct^k \left(\int_t^{b-a} \frac{\omega_r(f,s)_p}{s^{k+1}} ds + \frac{\|f\|_p}{(b-a)^k} \right), \quad 0 < t \le \frac{b-a}{r}.$

Proof of the case $\Omega = \mathbb{R}^n$. We prove first for r = k + 1 and then apply induction. Using induction on k, we get that

$$Q_k(x) := \frac{1 - 2^{-k} (x+1)^k}{x-1} \in \Pi_{k-1}.$$

This is by

$$Q_{k}(x) = \frac{1 - 2^{-k}(x+1)^{k}}{x-1} = \frac{1 - \frac{x+1}{2} + \frac{x+1}{2} - 2^{-k}(x+1)^{k}}{x-1} = Q_{1}(x) + \frac{x+1}{2}Q_{k-1}(x)$$

This gives

$$Q_{k}(x)(x-1) = 1 - 2^{-k}(x+1)^{k} \Rightarrow Q_{k}(x)(x-1)^{k+1} = (x-1)^{k} - 2^{-k}(x^{2}-1)^{k}$$
$$\Rightarrow (x-1)^{k} = 2^{-k}(x^{2}-1)^{k} + Q_{k}(x)(x-1)^{k+1}$$

With $T_h(f,x) := f(x+h)$ we have

$$(T_h - I)^k = 2^{-k} (T_{2h} - I)^k + Q_k (T_h) (T_h - I)^{k+1}.$$

It is evident that $\left\|Q_{k}\left(T_{h}\right)\right\|_{L_{n}\to L_{n}}\leq M\left(k\right)$. Therefore, with $\left|h\right|\leq t$

$$\begin{split} \left\| \Delta_{h}^{k} f \right\|_{p} &\leq 2^{-k} \left\| \Delta_{2h}^{k} f \right\|_{p} + M \left\| \Delta_{h}^{k+1} f \right\|_{p} \\ &\leq 2^{-k} \left(2^{-k} \left\| \Delta_{4h}^{k} f \right\|_{p} + M \left\| \Delta_{2h}^{k+1} f \right\|_{p} \right) + M \left\| \Delta_{h}^{k+1} f \right\|_{p} \\ &\leq \cdots \\ &\leq M \sum_{j=0}^{m} 2^{-jk} \left\| \Delta_{2^{j}h}^{k+1} f \right\|_{p} + 2^{-km} \left\| \Delta_{2^{m}h}^{k} f \right\|_{p} \\ &\leq M \sum_{j=0}^{m} 2^{-jk} \omega_{k+1} \left(f, 2^{j} t \right)_{p} + 2^{-k(m-1)} \left\| f \right\|_{p}. \end{split}$$

So if we let $m \to \infty$

$$\begin{split} \omega_{k}(f,t)_{p} &\leq M \sum_{j=0}^{\infty} 2^{-jk} \, \omega_{k+1}(f,2^{j}t)_{p} \\ &= M t^{k} \sum_{j=0}^{\infty} \left(2^{j}t\right)^{-k} \, \omega_{k+1}(f,2^{j}t)_{p} \\ &\leq c(k) t^{k} \sum_{j=0}^{\infty} \int_{2^{j+1}t}^{2^{j+1}t} \frac{\omega_{k+1}(f,s)_{p}}{s^{k+1}} \, ds \\ &= c(k) t^{k} \int_{t}^{\infty} \frac{\omega_{k+1}(f,s)_{p}}{s^{k+1}} \, ds \end{split}$$

Using induction

$$\omega_{k}(f,t)_{p} \leq ct^{k} \int_{t}^{\infty} \frac{\omega_{r}(f,s)_{p}}{s^{k+1}} ds$$

$$\leq ct^{k} \int_{t}^{\infty} s^{r-k-1} ds \int_{s}^{\infty} \frac{\omega_{r+1}(f,u)_{p}}{u^{r+1}} du$$

$$\leq ct^{k} \int_{t}^{\infty} \frac{\omega_{r+1}(f,u)_{p}}{u^{r+1}} du \int_{t}^{u} s^{r-k-1} ds$$

$$\leq ct^{k} \int_{t}^{\infty} \frac{\omega_{r+1}(f,u)_{p}}{u^{r+1}} (u^{r-k} - t^{r-k}) du$$

$$= ct^{k} \int_{t}^{\infty} \frac{\omega_{r+1}(f,u)_{p}}{u^{k+1}} du - ct^{r} \int_{t}^{\infty} \frac{\omega_{r+1}(f,u)_{p}}{u^{r+1}} du$$

$$\leq ct^{k} \int_{t}^{\infty} \frac{\omega_{r+1}(f,u)_{p}}{u^{k+1}} du.$$

The K-functional

Definition For two Banach spaces $X_1 \subset X_0$, the corresponding K-functional

$$\begin{split} K\left(f,t,X_0,X_1\right) &\coloneqq \inf_{f=f_0+f_1} \left\|f_0\right\|_{X_0} + t \left|f_1\right|_{X_1} \\ K\left(f,t,L_p\left(\Omega\right),W_p^r\left(\Omega\right)\right) &\coloneqq \inf_{g\in W^r(\Omega)} \left\|f-g\right\|_{L_p(\Omega)} + t \left|g\right|_{W_p^r(\Omega)}, \qquad 1 \leq p \leq \infty \;. \end{split}$$

Theorem [Equivalence of K-functional and modulus] For 'nice domains' $\Omega \subseteq \mathbb{R}^n$, $1 \le p \le \infty$, $r \ge 1$, there exist $C_1, C_2 > 0$, such that for any t > 0

$$C_1K_r(f,t^r)_p \le \omega_r(f,t)_p \le C_2K_r(f,t^r)_p$$

It is easy to show that C_2 depends only on r, but the constant C_1 further depends on the geometry of Ω . **Proof of the easy direction** Let $f \in L_p(\Omega)$ and let $g \in W_p^r(\Omega)$. Then

$$\begin{aligned} \omega_{r}(f,t)_{p} &\leq \omega_{r}(f-g,t)_{p} + \omega_{r}(g,t)_{p} \\ &\leq 2^{r} \left\| f - g \right\|_{L_{p}(\Omega)} + C(r)t^{r} \left| g \right|_{W_{p}^{r}(\Omega)} \\ &\leq C(r) \left(\left\| f - g \right\|_{L_{p}(\Omega)} + t^{r} \left| g \right|_{W_{p}^{r}(\Omega)} \right) \end{aligned}$$

Taking infimum over all possible $g \in W_p^r(\Omega)$ we obtain the right-hand side.

Applications of K-functionals

The K-functional appears in many applications such as denoising. It provides a balance between approximation and smoothness.

1. Regularized Least Squares

$$\min_{g = \sum \alpha_k N_r(\cdot - k)} \left\| f - g \right\|_2^2 + t \left\| g^{(2)} \right\|_2^2.$$

2. Denoising with Total Variation minimization over a bounded domain $\Omega \subset \mathbb{R}^n$

$$\min_{g \in W_2^1(\Omega)} \|f - g\|_2 + t |g|_{1,1}$$

Lip spaces

Def For a domain $\Omega \subset \mathbb{R}^n$ and $0 < \alpha \le 1$, we shall say that $f \in Lip(\alpha) = Lip(\alpha, \infty)$, if there exists M > 0, such that $|f(x) - f(y)| \le M |x - y|^{\alpha}$, for all $x, y \in \Omega$. We shall denote $|f|_{Lip(\alpha)}$ by the infimum over all M satisfying the condition. Observe that we can replace the condition by

$$\left|\Delta_{h}(f,x)\right| \leq M \left|h\right|^{\alpha}, \ \forall h \in \mathbb{R}^{n} \Rightarrow$$

$$\omega_{1}(f,t)_{\infty} \leq Mt^{\alpha}, \ \forall t > 0 \Rightarrow$$

$$t^{-\alpha}\omega_{1}(f,t)_{\infty} \leq M, \ \forall t > 0.$$

For $1 \le p \le \infty$, we define

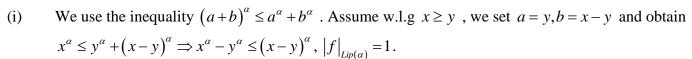
$$|f|_{lip(\alpha,p)} := \sup_{t>0} t^{-\alpha} \omega_1(f,t)_p$$
.

Example For $f(x) = x^{\alpha}$, $0 < \alpha \le 1$, $f \in Lip(\alpha)$, $f \notin Lip(\beta)$, $\beta > \alpha$.

Proof

Assume $f \in Lip(\beta)$, $\beta > \alpha$. Then for $0 < x \le 1$,

$$x^{\alpha} - 0^{\alpha} = x^{\alpha} \le M (x - 0)^{\beta} = Mx^{\beta} \Rightarrow x^{\alpha - \beta} \le M \Rightarrow \text{contradiction}$$



However, for any $0 < \alpha \le 1$, $f(x) = x^{\alpha} \in Lip(1,1)$, because

$$\int_{0}^{1} |f'(x)| dx = 1 \Rightarrow f' \in L_{1} \Rightarrow f \in W_{1}^{1}([0,1])$$

$$\Rightarrow \omega_{1}(f,t)_{1} \leq t |f|_{1,1} = t, \quad \forall t > 0$$

$$\Rightarrow |f|_{Lip(1,1)} = \sup_{t > 0} t^{-1} \omega_{1}(f,t)_{1} = 1.$$

Generalized Lip are a special case of Besov spaces. For any $\alpha > 0$, let $r := \lfloor \alpha \rfloor + 1$,

$$|f|_{B^{\alpha}_{p,\infty}} := \sup_{t>0} t^{-\alpha} \omega_r (f,t)_p.$$

Approximation using uniform piecewise constants (numerical integration)

The B-Spline of order one (degree zero, smoothness -1) $N_1(x) = \mathbf{1}_{[0,1]}(x)$.

Let $\Omega = \mathbb{R}$ or $\Omega = [a,b]$. We approximate from the space

$$S(N_1)^h := \left\{ \sum_{k \in \mathbb{Z}} c_k N_1 (h^{-1}x - k) \right\} = \left\{ \sum_{k \in \mathbb{Z}} c_k \mathbf{1}_{\left[kh, (k+1)h\right]}(x) \right\}.$$

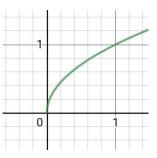
Theorem For $f \in W_p^1(\mathbb{R})$, $1 \le p \le \infty$,

$$E\left(f,S\left(N_{1}\right)^{h}\right)_{L_{p}(\mathbb{R})} := \inf_{g \in S\left(N_{1}\right)^{h}} \left\|f-g\right\|_{L_{p}(\mathbb{R})} \leq h\left\|f\right\|_{W_{p}^{1}(\mathbb{R})}.$$

Proof First assume $f \in C^1(\mathbb{R}) \cap W_p^1(\mathbb{R})$. Let's take the interval [kh,(k+1)h]. Then, for $p = \infty$

$$\left| f(x) - f(kh) \right| = \left| \int_{kh}^{x} f'(u) du \right| \le h \max_{kh \le u \le (k+1)h} \left| f'(u) \right|.$$

So select $c_k := f(kh)$ and you get the theorem for $p = \infty$. For $1 \le p < \infty$ we do something similar



$$\left|f(x)-f(kh)\right|^{p} \leq \left(\int_{kh}^{(k+1)h} \left|f'(u)\right| du\right)^{p}, \qquad x \in \left[kh,(k+1)h\right].$$

Then

$$\int_{kh}^{(k+1)h} |f(x) - f(kh)|^{p} dx \leq h \left(\int_{kh}^{(k+1)h} |f'(u)| du \right)^{p}$$

$$\leq h \left(||f'||_{L_{p}([kh,(k+1)h])} ||1||_{L_{p'}([kh,(k+1)h])} \right)^{p}$$

$$= hh^{p/p'} ||f'||_{L_{p}([kh,(k+1)h])}^{p}$$

$$= h^{p} ||f'||_{L_{p}([kh,(k+1)h])}^{p}.$$

$$= 1 + p - 1 = p$$

Therefore, with $g(x) := \sum_{k} f(kh) N_1(h^{-1}x - k)$, we get

$$||f - g||_{p}^{p} = \int_{-\infty}^{\infty} |f(x) - g(x)|^{p} dx = \sum_{k} \int_{kh}^{(k+1)h} |f(x) - f(kh)|^{p} dx \le \sum_{k} h^{p} ||f'||_{L_{p}([kh,(k+1)h])}^{p} = h^{p} ||f'||_{p}^{p}.$$

Now assume $f \in W^1_p(\mathbb{R})$, $1 \le p < \infty$. There exist sequences $\{f_k\}$, $f_k \in C^1(\mathbb{R}) \cap W^1_p(\mathbb{R})$, $\{g_k\}$, $g_k \in S(N_1)^h$, such that $\|f - f_k\|_{W^1_p(\mathbb{R})} \xrightarrow{k \to \infty} 0$ and $\|f_k - g_k\|_{L_p(\mathbb{R})} \le h |f_k|_{W^1_p(\mathbb{R})}$. This gives

$$\begin{split} \left\| f - g_k \right\|_p &\leq \left\| f - f_k \right\|_p + \left\| f_k - g_k \right\|_p \\ &\leq \left\| f - f_k \right\|_p + h \left| f_k \right|_{1,p} \underset{k \to \infty}{\longrightarrow} 0 + h \left| f \right|_{1,p} \end{split}$$

Linear approximation of Lip functions

Theorem: Let $f \in Lip(\alpha)$. Approximation with piecewise constants gives

$$E_{N}\left(f\right)_{L_{\infty}\left(\left[0,1\right]\right)} \coloneqq \inf_{\phi \in S\left(N_{1}\right)^{1/N}} \left\|f-\phi\right\|_{\infty} \leq CN^{-\alpha} \left\|f\right\|_{Lip\left(\alpha\right)}.$$

Proof [Classic technique] Recall that for $g \in C^1[0,1]$, we constructed $\phi_g \in S(N_1)^{1/N}$, such that $E_N(g)_\infty \le \|g - \phi_g\|_\infty \le N^{-1} |g|_{1,\infty}$. Therefore,

$$||f - \phi_g||_{\infty} \le ||f - g||_{\infty} + ||g - \phi_g||_{\infty}$$
$$\le ||f - g||_{\infty} + N^{-1} |g|_{\infty}$$

For a sequence $\{g_k\}$, with $K_1(f, N^{-1})_{\infty} = \lim_{k \to \infty} ||f - g_k||_{\infty} + N^{-1} ||g_k||_{1,\infty}$, we get

$$\left\|f-\phi_{g_k}\right\|_{\infty} \leq \left\|f-g_k\right\|_{\infty} + N^{-1}\left|g_k\right|_{1,\infty} \underset{k\to\infty}{\longrightarrow} K_1\left(f,N^{-1}\right)_{\infty}.$$

Using the equivalence of the modulus of smoothness and K-functional,

$$E_{N}(f)_{\infty} \leq K_{1}(f, N^{-1})_{\infty}$$

$$\leq C\omega_{1}(f, N^{-1})_{\infty}$$

$$\leq CN^{-\alpha}|f|_{Lip(\alpha)}.$$

Inverse Theorem: Assume $E_N(f)_{\infty} \leq MN^{-\alpha}$, $N \geq 1$. Then, $f \in Lip(\alpha)$.

Intuition $0 \le y < x \le 1$. Let x = y + h, $(N+1)^{-1} \le h \le N^{-1}$. If $x, y \in [kN^{-1}, (k+1)N^{-1}]$, then with the approximation constant approximation c_k in that interval,

$$|f(x)-f(y)| \le |f(x)-c_k| + |f(y)-c_k|$$

$$\le 2MN^{-\alpha}$$

$$\le 2M|x-y|^{\alpha}$$

However, since they might not fall in the same interval, there is a mixing argument.

So linear approximation is kind of limited when α is small. The problem is that we're not spending enough 'budget' in the vicinity of zero.

Besov Spaces

Continuous definition

Let $\alpha > 0$, $0 < q, p \le \infty$. Let $r \ge \lfloor \alpha \rfloor + 1$. The Besov space $B_q^{\alpha} \left(L_p \left(\Omega \right) \right)$ is the collection of functions $f \in L_p \left(\Omega \right)$ for which

$$\left|f
ight|_{B^{lpha}_q\left(L_p(\Omega)
ight)}\coloneqq egin{cases} \left(\int_0^\infty \left[t^{-lpha}\omega_r\left(f,t
ight)_p
ight]^qrac{dt}{t}
ight)^{1/q}, & 0< q<\infty, \ \sup_{t>0}t^{-lpha}\omega_r\left(f,t
ight)_p, & q=\infty. \end{cases}$$

is finite. The norm is

$$||f||_{B_q^{\alpha}(L_p(\Omega))} := ||f||_{L_p(\Omega)} + |f|_{B_q^{\alpha}(L_p(\Omega))}.$$

Theorem The space $B_q^{\alpha}(L_p(\Omega))$ does not depend on the choice of $r \ge \lfloor \alpha \rfloor + 1$ (application of the Marchaud inequality).

Proof For $\Omega = \mathbb{R}^n$, $1 \le q < \infty$. Let $r_2 > r_1 \ge \lfloor \alpha \rfloor + 1$. We already know that for $1 \le p \le \infty$, and any t > 0, $\omega_{r_2}(f,t)_p \le 2^{r_2-r_1}\omega_{r_1}(f,t)_p$ (for 0 with a different constant), so

$$\int_0^\infty \left[t^{-\alpha} \omega_{r_2} (f,t)_p \right]^q \frac{dt}{t} \le c \int_0^\infty \left[t^{-\alpha} \omega_{r_1} (f,t)_p \right]^q \frac{dt}{t} .$$

The other direction requires the Marchaud inequality

$$\int_0^\infty \left[t^{-\alpha} \omega_{r_1} \left(f, t \right)_p \right]^q \frac{dt}{t} \le c \int_0^\infty \left[t^{r_1 - \alpha} \int_t^\infty \frac{\omega_{r_2} \left(f, s \right)_p}{s^{r_1 + 1}} ds \right]^q \frac{dt}{t}.$$

Denote $\theta := r_1 - \alpha > 0$, and $\phi(s) := s^{-r_1} \omega_{r_2}(f, s)_p$. Then, we can apply the Hardy inequality [DL Theorem 2.3.1] for $1 \le q < \infty$, to the right-hand side

$$\int_{0}^{\infty} \left[t^{r_{1}-\alpha} \int_{t}^{\infty} \frac{\omega_{r_{2}} (f,s)_{p}}{s^{r_{1}+1}} ds \right]^{q} \frac{dt}{t} = \int_{0}^{\infty} \left[t^{\theta} \int_{t}^{\infty} \frac{\phi(s)}{s} ds \right]^{q} \frac{dt}{t} \\
\leq \frac{1}{\theta^{q}} \int_{0}^{\infty} \left[t^{\theta} \phi(t) \right]^{q} \frac{dt}{t} \\
= \frac{1}{\left(r_{1} - \alpha \right)^{q}} \int_{0}^{\infty} \left[t^{r_{1}-\alpha} t^{-r_{1}} \omega_{r_{2}} (f,t)_{p} \right]^{q} \frac{dt}{t} \\
= c \int_{0}^{\infty} \left[t^{-\alpha} \omega_{r_{2}} (f,t)_{p} \right]^{q} \frac{dt}{t}$$

Why are we asking for the condition $r \ge |\alpha| + 1$? Otherwise the space is 'trivial'

Theorem (univariate case) For $r < \alpha$, $1 \le p \le \infty$, we get that $B_q^{\alpha} \left(L_p \left(\Omega \right) \right) = \Pi_{r-1}$ if $\Omega = [a,b]$ and $B_q^{\alpha} \left(L_p \left(\Omega \right) \right) = \{0\}$ if $\Omega = \mathbb{R}$.

Proof (sketch, see Proposition 2.7.1 in CA) If $f \in B_q^{\alpha}(L_p(\Omega))$, then $t^{-\alpha}\omega_r(f,t)_p \leq C$, for $0 < t \leq t_0 < 1$. This implies that

$$t^{-r}\omega_r(f,t)_p = t^{\alpha-r}t^{-\alpha}\omega_r(f,t)_p \le Ct^{\alpha-r} \xrightarrow[t\to 0]{} 0.$$

The condition $t^{-r}\omega_r(f,t)_p \underset{t\to 0}{\longrightarrow} 0$, in turn gives that if $f \in C^r$, then $f^{(r)} = 0$ and so $f \in \Pi_{r-1}$. If $f \notin C^r$, we use density again.

Theorem For a bounded domain we can equivalently integrate the semi-norm on [0,1]. That is,

$$\left|f\right|_{B^{\alpha}_{q}\left(L_{p}(\Omega)\right)} \sim \begin{cases} \left(\int_{0}^{1} \left[t^{-\alpha}\omega_{r}\left(f,t\right)_{p}\right]^{q} \frac{dt}{t}\right)^{1/q}, & 0 < q < \infty, \\ \sup_{0 < r \leq 1} t^{-\alpha}\omega_{r}\left(f,t\right)_{p}, & q = \infty. \end{cases}$$

Proof If Ω is bounded, then we have $\omega_r(f,t)_p \equiv const$ for $t \ge diam(\Omega)$. Therefore for $1/2 \le t \le \infty$,

$$\omega_{r}(f,1/2)_{p} \leq \omega_{r}(f,t)_{p} \leq \omega_{r}(f,diam(\Omega))_{p} = \omega_{r}\left(f,\frac{2diam(\Omega)}{2}\right)_{p} \leq \left(1+2diam(\Omega)\right)^{r}\omega_{r}(f,1/2)_{p}.$$

This gives

$$\int_{1}^{\infty} \left[t^{-\alpha} \omega_{r} (f,t)_{p} \right]^{q} \frac{dt}{t} \leq C \left(\omega_{r} (f,1/2)_{p} \right)^{q} \int_{1}^{\infty} t^{-q\alpha-1} dt$$

$$\leq C \left(\omega_{r} (f,1/2)_{p} \right)^{q}$$

$$\leq C \left(\alpha, q, \Omega \right) \int_{1/2}^{1} \left[t^{-\alpha} \omega_{r} (f,t)_{p} \right]^{q} \frac{dt}{t}$$

Lemma For any domain taking the integral over [0,1] gives a quasi-norm equivalent to $\|f\|_{B^{\alpha}_q(L_p(\Omega))}$

Proof We replace the integral over $[1, \infty]$ by

$$\int_{1}^{\infty} \left[t^{-\alpha} \omega_{r} \left(f, t \right)_{p} \right]^{q} \frac{dt}{t} \leq C \| f \|_{p}^{q} \int_{1}^{\infty} t^{-q\alpha - 1} dt$$

$$= C \left(\alpha, q \right) \| f \|_{p}^{q}.$$

Therefore

$$\|f\|_{B^{lpha}_q\left(L_p(\Omega)
ight)} \sim \|f\|_p + \left(\int\limits_0^1 \left[t^{-lpha}\omega_r\left(f,t
ight)_p
ight]^q rac{dt}{t}
ight)^{1/q}.$$

Theorem $B_{q_1}^{\alpha_1}(L_p) \subseteq B_{q_2}^{\alpha_2}(L_p)$ if $\alpha_2 < \alpha_1$.

Proof $(q_1 = q_2)$ We may use $r_1 = \lfloor \alpha_1 \rfloor + 1 \geq \lfloor \alpha_2 \rfloor + 1 = r_2$ to equivalently define $B_{q_2}^{\alpha_2} (L_p)$ For $0 < t \leq 1$, $t^{-\alpha_2} \leq t^{-\alpha_1}$. So,

$$\begin{split} \left\| f \right\|_{B_{q}^{\alpha_{2}}\left(L_{p}\right)} &\leq C \Bigg(\left\| f \right\|_{p} + \Bigg(\int_{0}^{1} \left[t^{-\alpha_{2}} \omega_{r_{1}} \left(f, t \right)_{p} \right]^{q} \frac{dt}{t} \Bigg)^{1/q} \Bigg) \\ &\leq C \Bigg(\left\| f \right\|_{p} + \left(\int_{0}^{1} \left[t^{-\alpha_{1}} \omega_{r_{1}} \left(f, t \right)_{p} \right]^{q} \frac{dt}{t} \right)^{1/q} \Bigg) \\ &\leq C \left\| f \right\|_{B_{q}^{\alpha_{1}}\left(L_{p}\right)} \end{split}$$

Theorem $W_p^m \subseteq B_q^{\alpha}(L_p)$, $\forall \alpha < m$, $1 \le p \le \infty$, $0 < q \le \infty$.

Proof Let $g \in W_p^m(\Omega)$. This implies $g \in L_p(\Omega)$. We have that $r := \lfloor \alpha \rfloor + 1 \leq m$. It is sufficient to take the integral over [0,1].

$$\int_{0}^{1} \left[t^{-\alpha} \omega_{r} \left(g, t \right)_{p} \right]^{q} \frac{dt}{t} \leq C \int_{0}^{1} \left[t^{-\alpha} t^{r} \left| g \right|_{r, p} \right]^{q} \frac{dt}{t} \\
\leq C \left| g \right|_{r, p}^{q} \int_{0}^{1} t^{(r-\alpha)q-1} dt \\
\leq C \left| g \right|_{r, p}^{q}.$$

Discretization of the Besov semi-norm

Theorem One has the following equivalent form of the Besov semi-norm

$$\left|f
ight|_{\mathcal{B}^{lpha}_q\left(L_p(\Omega)
ight)} \sim egin{cases} \left(\sum_{k=-\infty}^{\infty} \left[2^{klpha}\,arphi_r\left(f,2^{-k}
ight)_p
ight]^q
ight)^{1/q}, & 0 < q < \infty. \ \sup_{k \in \mathbb{Z}} 2^{klpha}\,arphi_r\left(f,2^{-k}
ight)_p, & q = \infty. \end{cases}$$

Proof Define $\varphi(t) := t^{-\alpha} \omega_r(f,t)_p$. Then we claim that for $t \in [2^{-k-1},2^{-k}]$, $k \in \mathbb{Z}$, we have

$$2^{-r}\varphi(2^{-k})\leq \varphi(t)\leq 2^{\alpha}\varphi(2^{-k}).$$

To see that, we use the following properties:

(i) $\omega_r(f,t)_p$ is non-decreasing

(ii) For
$$N \in \mathbb{N}$$
, $1 \le p \le \infty$, $\omega_r(f, Nt)_p \le N^r \omega_r(f, t)_p$

The left-hand side

$$\begin{split} 2^{-r}\varphi\left(2^{-k}\right) &= 2^{k\alpha-r}\omega_r\left(f,2^{-k}\right)_p = 2^{k\alpha-r}\omega_r\left(f,22^{-k-1}\right)_p \\ &\leq 2^{k\alpha-r}2^r\omega_r\left(f,2^{-k-1}\right)_p \leq 2^{k\alpha}\omega_r\left(f,t\right)_p \leq t^{-\alpha}\omega_r\left(f,t\right)_p \end{split}$$

The right-hand side

$$t^{-\alpha}\omega_r\left(f,t\right)_p \leq t^{-\alpha}\omega_r\left(f,2^{-k}\right)_p \leq 2^{(k+1)\alpha}\omega_r\left(f,2^{-k}\right)_p \leq 2^{\alpha}\varphi\left(2^{-k}\right)$$

This gives us for $0 < q < \infty$, $k \in \mathbb{Z}$

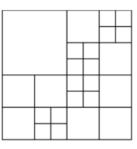
$$\int\limits_{2^{-k-1}}^{2^{-k}} \varphi(t)^q \, \frac{dt}{t} \sim \varphi\left(2^{-k}\right)^q \int\limits_{2^{-k-1}}^{2^{-k}} \frac{dt}{t} \sim \varphi\left(2^{-k}\right)^q \Rightarrow \int\limits_{2^{-k-1}}^{2^{-k}} \left(t^{-\alpha} \omega_r\left(f,t\right)_p\right)^q \frac{dt}{t} \sim \left[2^{k\alpha} \omega_r\left(f,2^{-k}\right)_p\right]^q.$$

Discretization over cubes

Definition [Dyadic cubes] Let $D := \{D_k : k \in \mathbb{Z}\}$

$$D_k := \left\{ Q = 2^{-kn} \left[m_1, m_1 + 1 \right] \times \cdots \times \left[m_n, m_n + 1 \right] : m \in \mathbb{Z}^n \right\}.$$

Observe that $Q \in D_k \Rightarrow |Q| = 2^{-kn}$.



For nonlinear/adaptive/sparse approximation in $L_p(\Omega)$, $\Omega \subseteq \mathbb{R}^n$, it is useful to use the special cases of Besov spaces

$$B_{\tau}^{\alpha} := B_{\tau}^{\alpha} \left(L_{\tau} \left(\Omega \right) \right), \qquad \frac{1}{\tau} = \frac{\alpha}{n} + \frac{1}{n}.$$

Theorem $\Omega = \mathbb{R}^n$. We have the equivalence

$$\left\|f
ight|_{B_{ au}^{lpha}} \sim \left(\sum_{k \in \mathbb{Z}} \left(2^{klpha} \, \omega_rig(f, 2^{-k}ig)_{ au}ig)^{ au}
ight)^{1/ au} \sim \left(\sum_{Q \in D} \left(\left|Q
ight|^{-lpha/n} \, \omega_rig(f, Qig)_{ au}ig)^{ au}
ight)^{1/ au} \; ,$$

$$\omega_r(f,Q)_{\tau} \coloneqq \sup_{h \in \mathbb{R}^n} \left\| \Delta_h^r(f,Q,\cdot) \right\|_{L_{\tau}(Q)}.$$

For $\Omega = [0,1]^n$, with l(Q) denoting the level of the cube Q, we may take the sum over $k \ge 0$

$$\big|f\big|_{\mathcal{B}^{\alpha}_{\tau}} \sim \left(\sum_{k=0}^{\infty} \left(2^{k\alpha}\, \omega_r \left(f,2^{-k}\right)_{\tau}\right)^{\tau}\right)^{1/\tau} \sim \left(\sum_{Q \in D, l(Q) \geq 0} \left(\big|Q\big|^{-\alpha/n}\, \omega_r \left(f,Q\right)_{\tau}\right)^{\tau}\right)^{1/\tau} \;.$$

The following theorem generalizes what we showed for the univariate case

Theorem Let $f(x) = \mathbf{1}_{\tilde{\Omega}}(x)$, $\tilde{\Omega} \subset [0,1]^n$, a domain with smooth boundary. Then $f \in B_{\tau}^{\alpha}$, $\alpha < 1/\tau$.

Proof For any Q, we have that $\omega_r(f,Q)_{\tau} = 0$, if $\partial \tilde{\Omega} \cap Q = \emptyset$. Otherwise, if l(Q) = k,

$$\omega_r(f,Q)_{\tau} \leq \left(\int_{Q} 1^{\tau}\right)^{1/\tau} = \left|Q\right|^{1/\tau} = 2^{-kn/\tau}.$$

Therefore,

$$\begin{split} \left|f\right|_{B_{\tau}^{\alpha}}^{\tau} &\leq C \sum_{l(Q) \geq 0} \left(\left|Q\right|^{-\alpha/n} \, \omega_{r} \left(f,Q\right)_{\tau}\right)^{\tau} \\ &\leq C \sum_{k=0}^{\infty} \left(2^{k\alpha} 2^{-kn/\tau}\right)^{\tau} \, \# \Big\{Q : l\left(Q\right) = k, \, \, Q \cap \partial \tilde{\Omega} \neq \varnothing\Big\} \\ &= C \sum_{k=0}^{\infty} 2^{k(\alpha\tau - n)} \, \# \Big\{Q : l\left(Q\right) = k, \, \, Q \cap \partial \tilde{\Omega} \neq \varnothing\Big\} \end{split}$$

We argue that

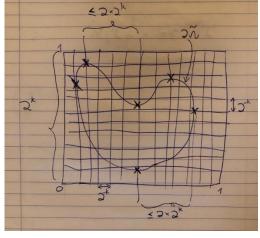
$$\#\{Q: l(Q) = k, Q \cap \partial \tilde{\Omega} \neq \emptyset\} \leq c(\tilde{\Omega})2^{k(n-1)}.$$
 (*)

This implies that if $\alpha < 1/\tau$

$$\left|f\right|_{B_{\tau}^{\alpha}}^{\tau} \leq C \sum_{k=0}^{\infty} 2^{k(\alpha \tau - n)} 2^{k(n-1)} = C \sum_{k=0}^{\infty} 2^{k(\alpha \tau - 1)} < \infty.$$

Let's get back to the estimate (*). Let use show a picture argument for $\tilde{\Omega} \subset [0,1]^2$. There is a finite number of points where the gradient of the boundary of the domain is aligned with one of the main axes. Between these points, the boundary segments are monotone in x_1 and x_2 , and therefore can only intersect at most 2×2^k

dyadic cubes.



Interpolation spaces

For $0 < \theta < 1$, $0 < q \le \infty$, X, Y(r),

$$K(f,t) := K(X,Y,f,t) := \inf_{g \in Y} \{ \|f - g\|_X + t |g|_Y \}.$$

$$\left|f\right|_{(X,Y)_{\theta,q}} = \left|f\right|_{\theta,q} := \begin{cases} \left(\int_0^1 \left[t^{-\theta}K\left(f,t\right)\right]^q \frac{dt}{t}\right)^{1/q}, & 0 < q < \infty, \\ \sup_{0 < t \le 1} t^{-\theta}K\left(f,t\right), & q = \infty. \end{cases}$$

$$||f||_{\theta,q} := ||f||_X + |f|_{\theta,q}.$$

It is convenient to discretize at $t_m = (2^r)^{-m} = 2^{-mr}, m \ge 0$,

$$\left|f\right|_{\theta,q} \sim egin{cases} \left(\sum_{m=0}^{\infty} \left[2^{mr\theta}K\left(f,2^{-mr}
ight)
ight]^q
ight)^{1/q}, & 0 < q < \infty, \\ \sup_{m \geq 0} 2^{mr\theta}K\left(f,2^{-mr}
ight), & q = \infty. \end{cases}$$

Def We call the space of functions for which $||f||_{\theta,q}$ is finite the **interpolation space** $(X,Y)_{\theta,q}$.

Observe that by definition $(X,Y)_{\theta,q} \subset X$, while for $0 < \theta < 1$, we have that $Y \subset (X,Y)_{\theta,q}$. To see this, let $g \in Y$. Then,

$$\begin{split} \sum_{m=0}^{\infty} & \left[2^{mr\theta} K \left(g, 2^{-mr} \right) \right]^{q} \leq \sum_{m=0}^{\infty} \left[2^{mr\theta} 2^{-mr} \left| g \right|_{Y} \right]^{q} \\ & = \left| g \right|_{Y}^{q} \sum_{m=0}^{\infty} 2^{mrq(\theta-1)} \\ & \leq C \left(r, q, \theta \right) \left| g \right|_{Y}^{q}. \end{split}$$

Also, for $\theta_2 \le \theta_1$, $(X,Y)_{\theta_1,q} \subseteq (X,Y)_{\theta_2,q}$. So, for $0 < \theta < 1$, we have a 'scale' of spaces between Y and X. Theorem $(L_p,W_p^r)_{\theta_q} = B_q^\alpha (L_p)$, $\alpha = \theta r$, $0 < \theta < 1$, $1 \le p \le \infty$.

Proof Observe first that $f \in (L_p, W_p^r)_{\theta,q} \Rightarrow f \in L_p$. Now, for $0 < q < \infty$, it is sufficient to bound the Besov semi-norm integral over [0,1]

$$\int_{0}^{1} \left[t^{-\theta} K(f,t) \right]^{q} \frac{dt}{t} = \int_{0}^{1} \left[t^{-\theta} K_{r}(f,t)_{p} \right]^{q} \frac{dt}{t}$$

$$\sim \int_{0}^{1} \left[t^{-\alpha/r} \omega_{r}(f,t^{1/r})_{p} \right]^{q} \frac{dt}{t} \qquad s = t^{1/r} \Rightarrow ds = \frac{1}{r} t^{1/r-1} dt \Rightarrow s^{-1} ds = \frac{1}{r} t^{-1} dt$$

$$\sum_{s=t^{1/r}} \int_{0}^{1} \left[s^{-\alpha} \omega_{r}(f,s)_{p} \right]^{q} \frac{ds}{s}.$$

Theorem [Reiteration theorem] If

$$B^lpha_ au \coloneqq B^lpha_ au\left(L_ auig(\Omegaig)
ight), \qquad rac{1}{ au} = rac{lpha}{n} + rac{1}{p}\,, \quad rac{1}{q} = rac{ hetalpha}{n} + rac{1}{p}\,, \quad 0 < heta < 1,$$

then

$$\left(L_p, B_{\tau}^{\alpha}\right)_{\theta,q} \sim B_q^{\alpha\theta}$$
.